Self Studies

Determinants Test - 48

Result Self Studies

Determinants Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A = \begin{bmatrix} \dfrac {-1 + i\sqrt {3}}{2i}& \dfrac {-1 - i\sqrt {3}}{2i}\\ \dfrac {1 + i\sqrt {3}}{2i} & \dfrac {1 - i\sqrt {3}}{2i}\end{bmatrix}, i = \sqrt {-i}$$ and $$f(x) = x^{2} + 2$$, then $$f(A)$$ is equal to
    Solution
    From the given matrix, we have
    $$A = \begin{bmatrix}\dfrac {\omega}{i} & \dfrac {\omega^{2}}{i}\\ -\dfrac {\omega^{2}}{i} & -\dfrac {\omega}{i}\end{bmatrix} = \dfrac {\omega}{i} \begin{bmatrix}1 & \omega\\ -\omega & -1\end{bmatrix}$$
    Thus $$ A^{2} = \omega^{2} \begin{bmatrix}1 - \omega^{2} & 0\\ 0 & 1 - \omega^{2}\end{bmatrix}$$
    $$= -\begin{bmatrix}-\omega^{2} + \omega^{4}& 0\\ 0 & -\omega^{2} + \omega\end{bmatrix}$$ 
    $$= \begin{bmatrix}-\omega^{2} + \omega & 0\\ 0 & -\omega^{2} + \omega\end{bmatrix} $$      ....$$\text{Since} \ f(x) = x^{2} + 2$$
    Therefore, $$ f(A) = A^{2} + 2 = \begin{bmatrix}-\omega^{2} + \omega & 0\\ 0 & -\omega^{2} + \omega\end{bmatrix} + \begin{bmatrix}2 & 0\\ 0 & 2\end{bmatrix}$$
    $$- [\omega^{2} + \omega + 2] \begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$$
    $$= (3 + 2\omega) \begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$$
    $$ = (2 + i\sqrt {3})\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$$
  • Question 2
    1 / -0
    $$\begin{vmatrix} { \left( { a }^{ x }+{ a }^{ -x } \right)  }^{ 2 } & { \left( { a }^{ x }-{ a }^{ -x } \right)  }^{ 2 } & 1 \\ { \left( b^{ x }+{ b }^{ -x } \right)  }^{ 2 } & { \left( { b }^{ x }-{ b }^{ -x } \right)  }^{ 2 } & 1 \\ { \left( { c }^{ x }+{ c }^{ -x } \right)  }^{ 2 } & { \left( { c }^{ x }-{ c }^{ -x } \right)  }^{ 2 } & 1 \end{vmatrix}$$ is equal to
    Solution
    Let $$ \Delta=\begin{vmatrix} { \left( { a }^{ x }+{ a }^{ -x } \right)  }^{ 2 } & { \left( { a }^{ x }-{ a }^{ -x } \right)  }^{ 2 } & 1 \\ { \left( b^{ x }+{ b }^{ -x } \right)  }^{ 2 } & { \left( { b }^{ x }-{ b }^{ -x } \right)  }^{ 2 } & 1 \\ { \left( { c }^{ x }+{ c }^{ -x } \right)  }^{ 2 } & { \left( { c }^{ x }-{ c }^{ -x } \right)  }^{ 2 } & 1 \end{vmatrix}$$

    Put $$x=0$$ in the given determinant, we get

    $$\Delta =\begin{vmatrix} { \left( 1+1 \right)  }^{ 2 } & { \left( 1-1 \right)  }^{ 2 } & 1 \\ { \left( 1+1 \right)  }^{ 2 } & { \left( 1-1 \right)  }^{ 2 } & 1 \\ { \left( 1+1 \right)  }^{ 2 } & { \left( 1-1 \right)  }^{ 2 } & 1 \end{vmatrix}$$

    $$=\begin{vmatrix} 4 & 0 & 1 \\ 4 & 0 & 1 \\ 4 & 0 & 1 \end{vmatrix}$$

    $$=0$$
  • Question 3
    1 / -0
    If $$x=cy+bz,y=az+cx,z=bx+ay$$, where $$x,y,z$$ are not all zero, then the value of $${ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+2abc$$
    Solution
    Given equations are $$x=cy+bz, y=az+cx, z=bx+ay$$
    Given system has non-trivial solution
    $$\quad \begin{vmatrix} 1 & -c & -b \\ c & -1 & a \\ b & a & -1 \end{vmatrix}=0$$
    $$\Rightarrow 1-abc-abc-{ b }^{ 2 }-{ a }^{ 2 }-{ c }^{ 2 }=0$$
    $$\Rightarrow { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+2abc=1$$ 
  • Question 4
    1 / -0
    If the vectors $$\vec {a}, \vec {b}, \vec {c}$$ are coplanar, then the value of $$\begin{vmatrix}\vec {a}& \vec {b} & \vec {c}\\ \vec {a}.\vec {a} & \vec {a}.\vec {b} & \vec {a}.\vec {c}\\ \vec {b}.\vec {a} & \vec {b}.\vec {b} & \vec {b} . \vec {c}\end{vmatrix} =$$
    Solution
    $$\bar { a } \cdot \bar { b } =\bar { a } \bar { b } \cos { \theta  } $$
    Co planar
    $$\Rightarrow \theta =0$$
    $$\Rightarrow \bar { a } \cdot \bar { b } =0$$
    Parallelly $$\bar { a } \cdot \bar { c } =\bar { a } \cdot \bar { c } =0$$
    $$\begin{vmatrix} \bar { a }  & \bar { b }  & \bar { c }  \\ \bar { a } \cdot \bar { a }  & \bar { a } \cdot \bar { b }  & \bar { a } \cdot \bar { c }  \\ \bar { b } \cdot \bar { a }  & \bar { b } \cdot \bar { b }  & \bar { b } \cdot \bar { c }  \end{vmatrix}$$
    $$=\begin{vmatrix} \bar { a }  & \bar { b }  & \bar { c }  \\ \bar { a } \cdot \bar { a }  & 0 & 0 \\ 0 & \bar { b } \cdot \bar { b }  & 0 \end{vmatrix}$$
    $$=\bar { a } \left( 0 \right) -\bar { b } \left( 0 \right) +\bar { c } \left( \bar { a } \cdot \bar { a } -\bar { b } \cdot \bar { b }  \right) $$
    $$=0$$
  • Question 5
    1 / -0
    Let $$A^{-1}\begin{bmatrix} 1 & 2017 & 2\\ 1 & 2017 & 4 \\ 1 & 2018 & 8\end {bmatrix}$$. Then $$|2A|-|2A^{-1}|$$ is equal to.
    Solution
    $$\left | A^{-1} \right | = \dfrac{1}{\left | A \right |}$$

    given matrix  $$A^{-1}  =$$
    \begin{bmatrix}
     1&2017  &2 \\
     1& 2017 &4 \\
     1&2018  &8 
    \end{bmatrix}

    solving the determinant

    $$\left | A^{-1} \right | = \dfrac{1}{\left | A \right |} = -2$$

    $$\left | kA \right | = k^{n}\left | A \right |$$
    where n is the order of the matrix

    $$-\left | 2A^{-1} \right | + \left | 2A \right |$$

    $$=-(-2)\times 2^{3}+\dfrac{-1}{2}\times 2^{3} =12 $$
  • Question 6
    1 / -0
    If $$A, B, C$$ are collinear points such that $$A(3, 4), C(11, 10)$$ and $$AB = 2.5$$ then point $$B$$ is
    Solution
    Given that the points $$A,B,C$$ are collinear such that $$A(3,4),C(11,10)$$ and $$AB=2.5$$,
    Consider the line joining $$A$$ and $$C$$,
    Slope of that line is $$\tan { \alpha  } =\dfrac { 10-4 }{ 11-3 } =\dfrac { 3 }{ 4 } $$,
    $$\Longrightarrow \cos { \alpha  } =\dfrac { 4 }{ 5 } $$ and $$\sin { \alpha  } =\dfrac { 3 }{ 5 } $$,
    We know that a point in a line at a distance $$r$$ from that point is $$y={ y }_{ 1 }+r\sin { \alpha  } $$ and $$x={ x }_{ 1 }+r\cos { \alpha  } $$,
    Where $$\tan{\alpha}$$ is the slope of that line
    Let the coordinates of the point $$B$$ be $$(x,y)$$,
    $$\Longrightarrow x=3+2.5(0.2)=5$$ and $$y=3+2.5(0.6)=\dfrac { 11 }{ 2 } $$,
    $$\therefore$$ The coordinates of $$B$$ are $$\left(5,\dfrac{11}{2}\right)$$
  • Question 7
    1 / -0
    Let $$z = \begin{vmatrix} 1& 1 + 2i & -5i\\ 1 - 2i & -3 & 5 + 3i\\ 5i & 5 - 3i & 7\end{vmatrix}$$, then
    Solution
    $$z=\left| \begin{matrix} 1 & 1+2i & -5i \\ 1-2i & -3 & 5+3i \\ 5i & 5-3i & 7 \end{matrix} \right| \\ \quad =1(-21-36)\quad -(1+2i)(7-14i-25i+15)\quad -5i(-13i-1)\\ \quad =-57-(1+2i)(22-39i)-65+5i\\ \quad =-57-(22-39i+44i+78)-65+5i\\ \quad =-57-100-5i-65+5i\\ \quad =-222$$
    $$ \therefore z$$ is purely real.
  • Question 8
    1 / -0
    If $$A = \begin{bmatrix} 2& -3\\ 4 & 1\end{bmatrix}$$, then adjoint of matrix $$A$$ is _______.
    Solution
    Let $$A=\begin{bmatrix} 2&-3 \\4&1\end{bmatrix}$$

    Let $$C$$ be the cofactor matrix of matrix $$A$$.
    $${C}_{11}={\left(-1\right)}^{1+1}{M}_{11}=1$$
    $${C}_{12}={\left(-1\right)}^{1+2}{M}_{12}=-4$$
    $${C}_{21}={\left(-1\right)}^{2+1}{M}_{21}=3$$
    $${C}_{22}={\left(-1\right)}^{2+2}{M}_{22}=2$$

    $$\therefore {C}_{ij}=\begin{bmatrix} {C}_{11} & {C}_{12} \\ {C}_{21} & {C}_{22}\end{bmatrix}$$

                $$=\begin{bmatrix} 1 & -4 \\ 3 & 2\end{bmatrix}$$

    Adj$$\left({C}_{ij}\right)={\begin{bmatrix} 1 & -4 \\ 3 & 2\end{bmatrix}}^{T}$$

                   $$=\begin{bmatrix} 1 & 3 \\ -4 & 2\end{bmatrix}$$
  • Question 9
    1 / -0
    Three distinct points A, B and C are given in the 2-dimensional coordinate plane such that the ratio of the distance of any one of them from the point $$(1, 0)$$ to the distance from the point $$(-1, 0)$$ is equal to $$\displaystyle \frac{1}{3}$$. Then the circumcentre of the triangle ABC is at the point:
    Solution
    Let (h,k) be the locus of points A, B & C
    using given condition
    $$\dfrac{\sqrt{(h-1)^{2}+K^{2}}}{\sqrt{(h+1)^{2}+K^{2}}}=\dfrac{1}{3}$$
    $$9(h-1)^{2}+9K^{2}=(h+1)^{2}+K^{2}$$
    or,
    $$8h^{2}+8K^{2}-20h+8=0$$
    $$h^{2}+K^{2}-\dfrac{5h}{4}+1=0$$
    this is a circle and it will be same circle which circumscribe $$\Delta ABC$$ as it contains all three pts on it.
    $$\therefore $$ center of circumcircle $$\equiv \left(\dfrac{5}{8}, 0\right)$$
  • Question 10
    1 / -0
    The number of values of k for which the system of linear equations, $$(2k+1)x+5ky=k+2$$ and $$kx+(k+2)y=2$$ has no solution, is:
    Solution
    A non-homogeneous system of linear equations has a unique non-trivial solution if and only if its determinant is non-zero. If this determinant is zero, then the system has either no nontrivial solutions or an infinite number of solutions.


    $$ \begin{bmatrix} (k+2)& 10\\ k & (k+3) \end{bmatrix}$$ $$ \begin{bmatrix} \ x\\ y\end{bmatrix}$$ $$ = \begin{bmatrix} k \\ k-1 \end{bmatrix}$$

    Now it is of the Form $$Ax=B$$

    Now to for the system to have no Solution , determinant of $$A$$ must be $$0$$,as follows

    $$\Rightarrow |A|=(k+2)(k+3)-k\times 10=0\Rightarrow k^2-5k+6 =(k-2)(k-3)=0$$

    Therefore for $$k=2,3$$ system will have no solution.

    For $$k=2$$, we get infinitely many solutions, after substituting the value of $$k=2$$ in the equations.

    Thus $$k=3$$

    Thus, the number of solutions is $$1$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now