Self Studies

Determinants Test - 49

Result Self Studies

Determinants Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If maximum and minimum values of $$D = \begin{vmatrix}1 & -\cos \theta & 1\\ \cos \theta & 1 & -\cos \theta\\ 1 & \cos \theta & 1\end{vmatrix}$$ are $$p$$ and $$q$$ respectively, then the value of $$2p + 3q$$ is _________.
    Solution
    $$D = \begin{vmatrix}1 & -\cos \theta & 1\\ \cos \theta & 1 & -\cos \theta\\ 1 & \cos \theta & 1\end{vmatrix}$$
    $$\Rightarrow D = 1(1 + \cos^{2}\theta) + \cos \theta (\cos \theta + \cos \theta) - 1 (\cos^{2}\theta - 1)$$
    $$= 1 + \cos^{2}\theta + 2\cos^{2}\theta -\cos^{2} \theta + 1$$
    $$= 2 (1 + \cos^{2} \theta)$$
    Now, $$-1\le \cos \theta\le 1\Rightarrow 0\le \cos^{2}\theta\le 1$$
    $$\therefore p = 4, q = 2$$
    $$\therefore 2p + 3q = 14$$.
  • Question 2
    1 / -0
    If $$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ satisfies the equation $$x^2 - (a + d) x + k = 0$$, then ?
    Solution
    If a matrix $$A$$ satisfies a polynomial equation, then the product of the roots of that equation is the determinant of $$A$$.

    Here, product of roots of the equation = $$k$$, also $$det(A)=ad-bc$$.
    Therefore, $$k=ad-bc$$
  • Question 3
    1 / -0
    For a positive numbers $$x, y$$ and $$z$$ the numerical value of the determinant $$\begin{bmatrix}1 & \log_{x} y & \log_{x} z \\ \log_{y} x & 1 & \log_{y} z\\ \log_{z} x & \log_{z} y & 1\end{bmatrix}$$ is:
    Solution
    $$D=\left| \begin{matrix} 1 & \log _{ x }{ y }  & \log _{ x }{ z }  \\ \log _{ y }{ x }  & 1 & \log _{ y }{ z }  \\ \log _{ z }{ x }  & \log _{ z }{ y }  & 1 \end{matrix} \right| =(1-\log _{ z }{ y } .\log _{ y }{ z } )-\log _{ x }{ y } \left( \log _{ y }{ x } -\log _{ z }{ x } .\log _{ y }{ z }  \right) +\log _{ x }{ z } \left( \log _{ y }{ x } .\log _{ z }{ y } -\log _{ z }{ x }  \right) \\ =\left( 1-1 \right) -\log _{ x }{ y } \left( \log _{ y }{ x } -\log _{ y }{ x }  \right) +\log _{ x }{ z } \left( \log _{ z }{ x } -\log _{ z }{ x }  \right) =0-0+0=0$$
  • Question 4
    1 / -0
    The value of the determinant 
    $$\begin{vmatrix} \cos^2 \dfrac{\theta}{2}&\sin^2\dfrac{\theta}{2}\\ \sin^2\dfrac{\theta}{2} &\cos^2\dfrac{\theta}{2}  \end{vmatrix}$$ 
    for all values of $$\theta $$, is
    Solution
    $$\begin{vmatrix}\cos ^2\dfrac{\theta}{2}&\sin ^2\dfrac{\theta}{2}\\ \sin ^2\dfrac{\theta}{2} & {\cos }^2 \dfrac{\theta}{2}\end{vmatrix}=\cos ^4\dfrac{\theta}{2}-\sin ^4\dfrac{\theta}{2}$$

    $$=\left({\cos }^2 \dfrac{\theta}2+{\sin }^2 \dfrac{\theta}2\right)\left({\cos }^2 \dfrac{\theta}2-{\sin }^2 \dfrac{\theta}2\right)$$

    $$=1\times \cos \theta=\cos \theta$$

    Hence, the answer is $$\cos \theta$$.
  • Question 5
    1 / -0
    The adjoint of the matric $$A = \begin{bmatrix}1 & 0 & 2\\ 2 & 1 & 0\\ 0 & 3 & 1\end{bmatrix}$$ is
    Solution
    $$adj(A)=cofactor(A)^T=\begin{bmatrix} A_{11} &A_{21}&A_{31}\\A_{12} &A_{22} &A_{32}\\A_{13} &A_{23} &A_{33}\end{bmatrix}=\begin{bmatrix} 1 &6&-2\\-2 &1 &4\\6 &-3 &1\end{bmatrix}$$
  • Question 6
    1 / -0
    If $$A + B + C = \pi$$, then $$\begin{vmatrix} \sin (A + B + C)& \sin B & \cos C\\ -\sin B & 0 & \tan A\\ \cos (A + B) & -\tan A & 0\end{vmatrix}$$ is equal to
    Solution
    Given $$A+B+C= \pi$$

    $$=\begin{vmatrix} \sin (A+B+C) & \sin B & \cos C \\ -\sin B & 0 & \tan A \\ \cos A+B & -\tan A & 0 \end{vmatrix}$$

    $$=\begin{vmatrix} \sin \pi & \sin B & \cos C \\ -\sin B & 0 & \tan A \\ \cos (\pi-C) & -\tan A & 0 \end{vmatrix}$$

    $$=\sin\pi [\tan^2A]-\sin B[-\tan A \cos (\pi-C)]+\cos C[\sin B\tan A]$$

    $$=0+\sin B\, \tan A\, \cos(\pi-C)+\cos C \sin B \tan A$$

    $$=\sin B\, \tan A[\cos\pi \cos C+ \sin\pi \sin C]+\cos C\sin B\tan A$$

    $$=-\sin B \tan A\cos C +\cos C \sin B \tan A$$

    $$=0$$ $$\left[\therefore \sin \pi=0 ,\cos \pi =-1\right]$$
  • Question 7
    1 / -0
    If the points $$A(-2,1),B(a,b)$$ and $$C(4,-1)$$ are collinear and $$a-b=1$$, find the values of $$a$$ and $$b$$.
    Solution
    Three points $$A(-2,1),\ B(a,b)$$ and $$C(4,-1)$$ are collinear so the area of the triangle is equal to zero
    Here the equation $$(1)$$ is $$\to a-b=1$$
    Here $$x_1=-2\ y_1=1$$
    $$x_1 =a\ y_1=b$$
    $$x_3=4\ y_3=-1$$
    Area of the triangle $$\triangle ABC=\dfrac {1}{2} [x_1 (y_2 -y_3)+x_2 (y_3 -y_1)+x_3 (y_1 -y_2)]=0$$
    $$\Rightarrow \ \dfrac {1}{2} [-2(b+1)+a(-1 -1)+4(1-b)]=0$$
    $$\Rightarrow \ \dfrac {1}{2}[-2b-2-2b+4-4b]=0$$
    $$\Rightarrow \ \dfrac {1}{2} [-6b+2-2b]=0$$
    $$\Rightarrow \ -3b+1-a=0$$
    $$\Rightarrow \ -a-3b=-1$$......Equation $$2$$
    Equation $$(1)\times 1\longrightarrow a-b=1$$
    Equation $$(2)\times 1\to \dfrac {-a-2b=-1}{-4b=0\\ \Rightarrow b=0}$$
    Putting the value of $$b=0$$ in Equation $$1:-$$
    $$a-b=1$$
    $$\Rightarrow \ a=1$$
    So the value of $$a=1, b=0$$
  • Question 8
    1 / -0
    The determinant $$\begin{vmatrix} xp+y & x & y\\ yp+z & y & z\\ 0 & xp+y & yp+z\end{vmatrix}=0$$. If.
    Solution

  • Question 9
    1 / -0
    If $$\triangle$$ =$$
    \left |
    \begin{array}{111}
    x_1+y_1\omega  & x_1\omega^2+y_1 & x_1+y_1\omega+z_1\omega^2 \\
    x_2+y_2\omega & x_2\omega^2+y_2 & x_2+y_2\omega+z_2\omega^2 \\
    x_3+y_3\omega & x_3\omega^2+y_3 & x_3+y_3\omega+z_3\omega^2 \\
    \end {array}
    \right |
    $$
    where $$1,\omega,\omega^2$$ are cube roots of unity then $$\triangle$$ is equal to
    Solution

  • Question 10
    1 / -0
    The value of determinant $$\begin{vmatrix} x+1 & x+2 & x+4\\ x+3 & x+5 & x+8\\ x+7 & x+10 & x+14\end{vmatrix}$$ is?
    Solution
    Operating $$C_3-C_2$$ and $$C_2-C_1$$, we get $$\Delta =\begin{vmatrix} x+1 & 1 & 2\\ x+3 & 2 & 3\\ x+7 & 3 & 4\end{vmatrix}$$
    Apply $$R_3-R_2, R_2-R_1$$
    $$\Delta =\begin{vmatrix} x+1 & 1 & 2\\ 2 & 1 & 1\\ 4 & 1 & 1\end{vmatrix}$$ apply $$C_3-C_2$$
    $$\begin{vmatrix} x+1 & 1 & 1\\ 2 & 1 & 0 \\ 4 & 1 & 0\end{vmatrix}=1.(2-4)=-2$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now