Self Studies

Determinants Test - 51

Result Self Studies

Determinants Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find $$ \begin{vmatrix}\log e & \log e^{2} & \log e^{3} \\ \log e^{2} & \log e^{3} & \log e^{4} \\ \log e^{3} & \log e^{4} & \log e^{5}\end{vmatrix}$$.
    Solution
    As we know that, $$loge^n=nloge$$

    So, We can write given Determinant as

    $$\begin{vmatrix}log e & 2log e & 3log e \\ 2log e & 3log e & 4log e \\ 3log e &\ 4log e & 5log e \end{vmatrix}=(loge)^3\begin{vmatrix}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix}$$ .... [Taking $$loge$$ common from each row]

    Expanding the Given Determinant , we get

    $$=(loge)^3|(15-16)-2(10-12)+3(8-9)|=(loge)^3\times 0=0$$
  • Question 2
    1 / -0
    If the lines $$p_{ 1 }x+q_{ 1 }y=1, p_{ 2 }x+q_{ 2 }y=1$$ and $$p_{3}x+q_{3}y=1$$ be concurrent, show that the points $$(p_{1},q_{1}), (p_{2}, q_{2})$$ and $$ (p_{3}, q_{3})$$ are collinear.
    Solution
     Given:
    $$p_{ 1 }x+q_{ 1 }y=1, p_{ 2 }x+q_{ 2 }y=1$$ and $$p_{3}x+q_{3}y=1$$

    The lines will be concurrent if

    $$\begin{vmatrix} { p }_{ 1 } & { q }_{ 1 } & -1 \\ { p }_{ 2 } & { q }_{ 2 } & -1 \\ { p }_{ 3 } & { q }_{ 3 } & -1 \end{vmatrix}=0$$

    Or 

    $$\dfrac { 1 }{ 2 } \begin{vmatrix} { p }_{ 1 } & { q }_{ 1 } & 1 \\ { p }_{ 2 } & { q }_{ 2 } & 1 \\ { p }_{ 3 } & { q }_{ 3 } & 1 \end{vmatrix}=0$$

    Or 

    $$\triangle=0$$

    i.e., area of a triangle formed by the points $$({p}_{1}, {q}_{1})$$, $$({p}_{2}, {q}_{2})$$, and $$({p}_{3}, {q}_{3})$$ is zero and as such the points are collinear.
  • Question 3
    1 / -0
    The value of $$\dfrac { 1 }{ x-y } \begin{vmatrix} 1 & 0 & 0 \\ 3 & { x }^{ 3 } & 1 \\ 5 & { y }^{ 3 } & 1 \end{vmatrix}$$ is-
    Solution
    Expanding along $$R_1$$

    $$=\dfrac{1}{(x-y)}[1(x^3-y^3)]$$

    $$=\dfrac{(x-y)(x^2+y^2+xy)}{x-y}=x^2+y^2+xy$$
  • Question 4
    1 / -0
    Find the determinant of given matrix $$\left[ \begin{matrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{matrix} \right] $$
    Solution
    $$\left| \begin{matrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{matrix} \right| $$ 

    $$ =\left| \begin{matrix} a+b+c & a+b+c & a+b+c \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{matrix}   \right| { R }_{ 1 }\rightarrow { R }_{ 1 }+{ R }_{ 2 }+{ R }_{ 3 }$$

    Taking out common $$a+b+c$$ from $${R_1}$$

    $$=\left( a+b+c \right) \left| \begin{matrix} 1 & 1 & 1 \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{matrix} \right|$$ 

    $$ =\left( a+b+c \right) \left| \begin{matrix} 1 & 0 & 0 \\ 2b & -\left( a+b+c \right)  & 0 \\ 2c & 0 & -\left( a+b+c \right)  \end{matrix} \right| { R }_{ 2 }\rightarrow { R }_{ 2 }-{ R }_{ 1 },{ R }_{ 3 }\rightarrow { R }_{ 3 }-{ R }_{ 1 }$$

    Expanding along $${R_1}$$

    $$={ \left( a+b+c \right)  }^{ 3 }$$
  • Question 5
    1 / -0
    If $$\triangle =\begin{bmatrix} { a }_{ 1 } & { b }_{ 1 } & { c }_{ 1 } \\ { a }_{ 2 } & { b }_{ 2 } & { c }_{ 2 } \\ { a }_{ 3 } & { b }_{ 3 } & { c }_{ 3 } \end{bmatrix}$$ and $${A}_{2},{B}_{2},{C}_{2}$$ are respectively cofactors of $${a}_{2},{b}_{2},{c}_{2}$$ then $${a}_{1}{A}_{2}+{b}_{1}{B}_{2}+{c}_{1}{C}_{2}$$ is equal to ?
    Solution
    Co-factor of $$ \displaystyle a_2 = (-1)^{i+j}\left|\begin{matrix} b_1 & c_1 \\ b_3 & c_3 \end{matrix}\right| = - [b_1 \, c_3 - c_1 \, b_3] = A_2 $$
    i=2  j=1

    of $$ \displaystyle b_2 = (-1)^{2+2} \left|\begin{matrix} a_1 & c_1 \\ a_3 & c_3 \end{matrix}\right| = [a_1 \, c_3 - c_1 \, a_3] = B_2 $$ 

    of $$ \displaystyle c_2 = (-1)^{2+3} \left|\begin{matrix} a_1 & b_1 \\ a_3 & b_3 \end{matrix}\right| = -[a_1 \, b_3 \, - b_1 \, a_3 ] = C_2 $$

    $$ a_1 \, A_2 + b_1 \, B_2 +c_1 \, C_2 $$

    $$ \displaystyle -a_1 \, b_1 \, c_3 + a_1 \, c_1 \, b_3 + b_1 \, a_1 \, c_3 - b_1 c_1 \, a_3 -c_1 \, a_1 \, b_3 + c_1 \, b_1 \, a_3 $$

    $$ \displaystyle = 0 $$
  • Question 6
    1 / -0
    If $${x}^{a}{y}^{b}={e}^{m},{x}^{c}{y}^{d}={e}^{n}, { \triangle  }_{ 1 }=\begin{vmatrix} m & b \\ n & d \end{vmatrix},{ \triangle  }_{ 2 }=\begin{vmatrix} a & m \\ c & n \end{vmatrix}$$ and $${ \triangle  }_{ 3 }=\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$ the value of $$x$$ and $$y$$ are respectively
    Solution
    $${ x }^{ a }{ y }^{ b }={ e }^{ m }$$

    Taking $${ \log   }_{ e }$$ on both sides,

    $$\log _{ e }{ \left( { x }^{ a }{ y }^{ b } \right)  } =\log _{ e }{ { e }^{ m } } $$

    $$a\log _{ e }{ x } +b\log _{ e }{ y } =m\rightarrow 1$$

    Similarly,

    $$c\log _{ e }{ x } +d\log _{ e }{ y } =n\rightarrow 2$$

    Solving $$1$$ and $$2$$ by Cramer's rule,

    $$\log _{ e }{ x } =\cfrac { \begin{vmatrix} m & b \\ n & d \end{vmatrix} }{ \begin{vmatrix} a & b \\ c & d \end{vmatrix} } =\cfrac { { \triangle  }_{ 1 } }{ { \triangle  }_{ 3 } } $$

    $$\log _{ e }{ y } =\cfrac { \begin{vmatrix} a & m \\ c & n \end{vmatrix} }{ \begin{vmatrix} a & b \\ c & d \end{vmatrix} } =\cfrac { { \triangle  }_{ 2 } }{ { \triangle  }_{ 3 } } $$

    $$\therefore x={ e }^{ \left( { { \triangle  }_{ 1 } }/{ { \triangle  }_{ 3 } } \right)  },y={ e }^{ \left( { { \triangle  }_{ 2 } }/{ { \triangle  }_{ 3 } } \right)  }$$

    Answer: D
  • Question 7
    1 / -0
    For distinct numbers $$a,b,c,x,y,z\ \epsilon R$$ if $${ \Delta  }_{ 1 }\left| \begin{matrix} \left( a-x \right) ^{ 2 } & \left( b-x \right) ^{ 2 } & \left( c-x \right) ^{ 2 } \\ \left( a-y \right) ^{ 2 } & \left( b-y \right) ^{ 2 } & \left( c-y \right) ^{ 2 } \\ \left( a-z \right) ^{ 2 } & \left( b-z \right) ^{ 2 } & \left( c-z \right) ^{ 2 } \end{matrix} \right| { \Delta  }_{ 2 }\left| \begin{matrix} (ax+1)^{ 2 } & (bx+1)^{ 2 } & (cx+1)^{ 2 } \\ (ay+1)^{ 2 } & (by+1)^{ 2 } & (cy+1)^{ 2 } \\ (az+1)^{ 2 } & (bz+1)^{ 2 } & (cz+1)^{ 2 } \end{matrix} \right| $$ then $$\frac { { \Delta  }_{ 1 }^{ 2 } }{ { \Delta  }_{ 2 }^{ 2 } } +\frac { { \Delta  }_{ 2 }^{ 2 } }{ { \Delta  }_{ 1 }^{ 2 } } =$$
  • Question 8
    1 / -0
    Three straight lines $$2x+11y-5=0, 24x+7y-20=0$$ and $$4x-3y-2=0$$
  • Question 9
    1 / -0
    $$\Delta =\left| \begin{matrix} 0 & i-100 & i-500 \\ 100-i & 0 & 1000-i \\ 500-i & i-1000 & 0 \end{matrix} \right|$$ is equal to
    Solution

  • Question 10
    1 / -0
    If $$p{\lambda ^4} + p{\lambda ^3} + p{\lambda ^2} + s\lambda  + t = $$ $$\left| {\begin{array}{*{20}{c}}{{\lambda ^2} + 3\lambda } & {\lambda  + 1} & {\lambda  + 3}\\{\lambda  + 1} & {2 - \lambda } & {\lambda  - 4}\\{\lambda  - 3} & {\lambda  + 4} & {3\lambda }\end{array}} \right|$$, then value of t is 
    Solution
    first we solve RHS then compare with LHS
    $$=>(\lambda^2+3\lambda)[(2-\lambda)(3\lambda)-(\lambda+4)(\lambda-4)]-(\lambda+1)[(\lambda+1)(3\lambda)-(\lambda-3)(\lambda-4)]$$ $$+(\lambda+3)$$
    $$[(\lambda+1)(\lambda+4-(\lambda-3)(2-\lambda))]$$

    $$=>[-4\lambda^2+6\lambda^3+16\lambda^2-12\lambda^3+18\lambda^2+48\lambda-2\lambda^3-10\lambda^2+12\lambda-2\lambda^2-10\lambda+12+2\lambda^3+10\lambda+6\lambda^2+30]$$


    $$=>[-4\lambda^4-6\lambda^3+28\lambda^2+60\lambda+18]$$

    Now compare both side

    $$=>[p\lambda^4+p\lambda^3+p\lambda^2+s\lambda+t=-4\lambda^4-6\lambda^3+28\lambda^2+60\lambda+18]$$

    hence,$$t=18$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now