Self Studies

Determinants Test - 54

Result Self Studies

Determinants Test - 54
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\begin{vmatrix} 1+x & 2 & 3 \\ 1 & 2+x & 3 \\ 1 & 2 & 3+x \end{vmatrix}=0$$ then $$x=$$
    Solution
    We have $$(1-x)((2+x)(3+x)-6)-2(3-2)+3(2-(2+x))=0$$
    it gives $$6x^2+x^3=0$$
    $$x^2(6+x)=0\implies x=0,0,-6$$
    option c gives correct answer
  • Question 2
    1 / -0
    If $$A = {\left[ {\begin{array}{*{20}{c}}a\\b\\c\end{array}\begin{array}{*{20}{c}}p\\q\\r\end{array}} \right]_{3 \times 2}}$$ then determinant $$\left( {A{A^T}} \right)$$ is equal to
    Solution
    $$A=\begin{bmatrix} a & b \\ c & p \\ q & r \end{bmatrix} \Rightarrow A^{T}= \begin{bmatrix} a & b & c \\ p & q & r \end{bmatrix}$$

    $$AA^{T}= \begin{bmatrix} a & b & c \\ p & q & r \end{bmatrix}  \begin{bmatrix} a & b & c  \\ p &  q & r \end{bmatrix}= \begin{bmatrix} a^{2}+ p^{2} & ab+pq & ac+pr \\ ab+pq & b^{2}+q^{2} & bc+qr \\ ac+pr & bc+qr & c^{2}+r^{2} \end{bmatrix}$$

    $$det (AA^{T}) = (a^{2}+ p^{2}) {(b^{2}+q^{2})(c^{2}-r^{2})-(bc+qr)^{2}}$$

    $$-(ab+pq){(ab+pq)(c^{2}-r^{2})-(ac+pr)(bc+qr)}$$

    $$+(ac+pr) {(ab+pq)(bc+qr)- (ac+pr)(b^{2}+q^{2})}$$

    $$=0 $$  
  • Question 3
    1 / -0
    If $${t_{1,}}{t_2}\,$$ and $${t_3}$$ distinct. and the points $$\left( {{t_1}.2a{t_1} + a{t_1}^3} \right).\left( {{t_2}.2a{t_2} + a{t_2}^3} \right),\left( {{t_3}.2a{t_3} + a{t_3}^3} \right)$$ are collinear, then $${t_1} + {t_2} + {t_3} = $$
    Solution
    Let points are $$P(t_1. 2at_1 + at_1^3)$$ $$,Q(t_1, 2at_2+at_1^3)$$ and $$R(t_3, 2at_3+at_3^3)$$

    $$P,Q$$ and $$R$$ are collinear

    $$\Rightarrow $$area ( $$\Delta PQR$$) $$= 0$$

    $$\Rightarrow \begin{vmatrix}  1&t_1&2at_1 + at_1^3  \\1&t_2& 2at_2+at_2^3\\1& t_2&2at_3+at_3^3 \end{vmatrix}=0$$

    $$\Rightarrow \begin{vmatrix} 1&t_1 &2at_1 \\ 1&t_2 &2at_2 \\1&t_3&2at_3 \end{vmatrix} + \begin{vmatrix}1&t_1 &at_1^3 \\ 1&t_2&at_2^3\\1&t_3&at_3^3  \end{vmatrix}=0$$

    $$\Rightarrow 2a\begin{vmatrix}1 &t_1&t_1 \\ 1&t_2&t_2\\1&t_3&t_3  \end{vmatrix}+a\begin{vmatrix}1 &t_1&t_1^3\\1&t_2&t_2^3\\1 & t_3&t_3^3 \end{vmatrix}=0$$

    Determinant is zero if two rows of a determinant are same 

    $$\Rightarrow 0+a \begin{vmatrix} 1&t_1&t_1^3  \\1&t_2 &t_2^3\\ 1&t_3&t_3^3  \end{vmatrix}=0$$

    $$R_2 \to R_2 - R_1$$         $$R_3\to R_3-R_1$$

    $$\Rightarrow \begin{vmatrix} 1&t_1&t_1^3 \\  1&t_2-t_1&t_2^3-t_1^3\\0&t_2-t_1&t_3^3-t_1^3  \end{vmatrix}=0$$

    $$\Rightarrow (t_2-t_1)(t_3-t_1) \begin{vmatrix} 1&t_1&t_1^3 \\0&1&t_1^2+t_1t_2+t_2^2\\0&1&t_1^2+t_1t_3+t_3^2\end{vmatrix}=0$$

    $$\Rightarrow (t_2-t_1)(t_2-t_1)[t_1^2 + t_!t_2+t_3^2 - t_1^2 - t_1t_2-t_2^2]=0$$

    $$\Rightarrow (t_2-t_1)(t_3-t_1)[t_2^3 + t_1t_3-t_1t_2-t_2^2] = 0$$

    $$\Rightarrow (t_2-t_1)(t_3-t_1)(t_3-t_2)(t_1+t_2+t_3)=0$$

    as $$t_1\neq  t_2 \neq  t_3$$

    $$\Rightarrow t_2-t_1$$ or $$t_3-t_1$$ or $$t_3-t_2$$ can't be zero

    $$\Rightarrow t_1+t_2+t_3 = 0$$
  • Question 4
    1 / -0
    If $$\Delta  = \left| {\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}} \right|$$ for $$x \ne 0,\,y \ne 0$$ then $$\Delta $$ is
    Solution
    $$\Delta =\left| \begin{matrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{matrix} \right|$$
    $$ \Delta =\left( 1+x \right) \left( 1+y \right) -1-1\left( 1+y-1 \right) +1\left( 1-1-x \right)$$
    $$ \Delta =\left( 1+x \right) \left( 1+y \right) -1-y-x$$
    $$ \Delta =xy+1+x+y-1-y-x$$
    $$ \Delta =xy$$
    It is divisible by both $$x$$ and $$y$$
    $$B$$ is correct.

  • Question 5
    1 / -0
    If $$\alpha, \beta, \gamma, $$ are the roots of $$x^3+ax^2+b=0$$, then the value of $$\left| \begin{matrix} \alpha  & { \beta  } & \gamma  \\ \beta  & \gamma  & \alpha  \\ \gamma  & \alpha  & \beta  \end{matrix} \right| $$ is
    Solution

  • Question 6
    1 / -0
    Find the value of the determinant $$\begin{vmatrix} 1 & 0 & 0 \\ 2 & \cos { x }  & \sin { x }  \\ 3 & \sin { x }  & \cos { x }  \end{vmatrix}$$.
    Solution
    Given
    $$\begin{vmatrix} 1 & 0 & 0 \\ 2 & cosx & sinx \\ 3 & sinx & cosx \end{vmatrix}$$
    $$=1(\cos x\times\cos x-\sin x\times\sin x)$$
    $$=\cos^x-\sin^2x$$
    We know that 
    $$\cos 2x=\cos^2x-\sin^2x$$
    $$=\cos 2x$$
  • Question 7
    1 / -0
    The value of $$x$$ for which the matrix $$A=\begin{bmatrix} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1 \end{bmatrix}$$
    Is non-singular
    Solution
    $$A=\begin{bmatrix} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1 \end{bmatrix}$$
    matrix $$'A'$$ is non-singular

    $$\therefore |A|\neq 0$$
    $$=\begin{vmatrix} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1 \end{vmatrix}\neq 0$$
    $$\Rightarrow (x-1)[x^2+1-2x-1]-1(x-2)+1(1-x+1)\neq 0$$
    $$\Rightarrow (x-1).x(x-2)+2(2-x)\neq 0$$
    $$\Rightarrow (x-1)x(x-2)-2(x-2)\neq 0$$
    $$\Rightarrow (x-2)(x^2-2x+x-2)\neq 0$$
    $$\Rightarrow (x-2)(x(x-2)+1(x-2))\neq 0$$
    $$\Rightarrow (x-2)^2(x+1)\neq 0$$
    $$\therefore x\neq 2,\ x\neq -1$$
    $$\therefore x\in R-\{-1,\ 2\}$$
  • Question 8
    1 / -0
    If the points $$(k, 2-2k)$$, $$(1-k, 2k)$$ and $$(-k-4, 6-2k)$$ be collinear, the number of possible values of $$k$$ are 
    Solution
    $$(k, 2-2k), (1-k, 2k)$$ & $$(-k-4, 6-2k)$$
    if collinear the $$m_1=m_2$$
    $$\dfrac{2k-2+2k}{1-k-k}=\dfrac{6-2k-2k}{-k-4-1+k}$$
    $$\dfrac{4k-2}{1-2k}=\dfrac{6-4k}{-5}$$
    $$\dfrac{2k-1}{1-2k}=\dfrac{3-2k}{-5}$$
    $$5=3-2k$$
    $$2k=-2$$
    $$k=-1$$
    Only $$1$$ value possible.

  • Question 9
    1 / -0
    If $$f(x)=\begin{bmatrix} \cos { x }  & -\sin { x }  & 0 \\ \sin { x }  & \cos { x }  & 0 \\ 0 & 0 & 1 \end{bmatrix}$$, then $$f(x+y)$$ is equal to:
    Solution
    Expanfing along $$ c_{3}, f(n) = cos^{2}x+sin^{2}x = 1 $$
    $$ \Rightarrow f(x+y) = 1 ,f(y) = 1 $$
    $$ \Rightarrow f(x+y) = f(n)f(y) $$ is true only 
    $$ \Rightarrow (c) $$ 

  • Question 10
    1 / -0
    If $$A=\quad \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{bmatrix}, B=(adj\quad A)$$ and $$C=5A$$, then $$\cfrac { \left| adj\quad B \right|  }{ \left| C \right|  } $$ is equal to
    Solution
    We have
    $$\begin{matrix} A=\left[ { \begin{array} { *{ 20 }{ c } }1 & { -1 } & 1 \\ 0 & 2 & { -3 } \\ 2 & 1 & 0 \end{array} } \right]  \\ B=\left( { adj\, A } \right)  \\ And, \\ C=5A \\ Now \\ \frac { { \left| { adj\, B } \right|  } }{ { \left| C \right|  } } =? \\ \left| A \right| =1\left( { 0+3 } \right) +1\left( 6 \right) +1\left( { -4 } \right)  \\ \left| A \right| =5 \\ \frac { { \left| { adj\, \left( { adj\, A } \right)  } \right|  } }{ { \left| { 5A } \right|  } } =\frac { { { { \left| A \right|  }^{ { { \left( { 3-1 } \right)  }^{ 2 } } } } } }{ { 125\left| A \right|  } }  \\ =\frac { { { { \left| A \right|  }^{ 4 } } } }{ { 125|A| } }  \\ =\frac { { |A| } }{ { 125 } } =1 \\  \end{matrix}$$
    Hence, 
    The option $$(A)$$ is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now