Self Studies

Determinants Test - 56

Result Self Studies

Determinants Test - 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\left| \begin{matrix} a & b-c & c+b \\ a+c & b & c-a \\ a-b & b+a & c \end{matrix} \right| $$ =
    Solution

  • Question 2
    1 / -0
    To solve  $$x + y = 3 : 3 x - 2 y - 4 = 0$$  by determinant method find  $$D.$$
    Solution
    $${ a }_{ 1 }x+{ b }_{ 1 }y-{ c }_{ 1 }=0\quad \Rightarrow { a }_{ 1 }x+{ b }_{ 1 }y={ c }_{ 1 }$$
    $${ a }_{ 2 }x+{ b }_{ 2 }y-{ c }_{ 2 }=0\quad \Rightarrow { a }_{ 2 }x+{ b }_{ 2 }y={ c }_{ 2 }$$
    then the solution of $$x$$ and $$y$$ can be obtained by evaluating the following integral :
    $$x=\frac { \left| \underset { { c }_{ 2 } }{ { c }_{ 1 } } \quad \underset { { b }_{ 2 } }{ { b }_{ 1 } }  \right|  }{ \left| \underset { { a }_{ 2 } }{ { a }_{ 1 } } \quad \underset { { b }_{ 2 } }{ { b }_{ 1 } }  \right|  } $$  and  $$y=\dfrac { \left| \underset { { a }_{ 2 } }{ { a }_{ 1 } } \quad \underset { { c }_{ 2 } }{ { c }_{ 1 } }  \right|  }{ \left| \underset { { a }_{ 2 } }{ { a }_{ 1 } } \quad \underset { { b }_{ 2 } }{ { b }_{ 1 } }  \right|  } $$
    $$\therefore$$    $$x+y=3$$
      $$3x-2y=4$$
    can be solved using the above method
    $$x=\dfrac { \left| \underset { 4 }{ 3 } \quad \underset { -2 }{ 1 }  \right|  }{ \left| \underset { 3 }{ 1 } \quad \underset { -2 }{ 1 }  \right|  } \quad ;\quad y=\dfrac { \left| \underset { 3 }{ 1 } \quad \underset { 4 }{ 3 }  \right|  }{ \left| \underset { 3 }{ 1 } \quad \underset { -2 }{ 1 }  \right|  } $$
    $$x=\dfrac { -6-4 }{ -2-3 } \quad ;\quad y=\dfrac { 4-9 }{ -5 } $$
    $$x=\dfrac { 10 }{ -5 } \quad ;\quad y=\dfrac { -5 }{ -5 } $$
    $$x=2\quad ;\quad y=1$$
    now the quantity $$\left| \underset { 3 }{ 1 } \quad \underset { -2 }{ 1 }  \right| =D$$ (determinant)
    $$D=\left| \underset { 3 }{ 1 } \quad \underset { -2 }{ 1 }  \right| =-5$$
    So, answer is option C.
  • Question 3
    1 / -0
    If $$(k,2-2k),(-k+1,2k),(-4-k,6-2k)$$ are collinear, then $$k=$$
    Solution
    $$\begin{array}{l} where\, \, more\, than\, \, three\, \, po{ { int } }s\, are\, collinear\, slope\, of\, the\, line\, are\, same \\ So, \\ slope:\, \, \left[ { \left( { k,2-2k } \right) ,\left( { -k+1,2k } \right)  } \right] =\left[ { \left( { -k+1,\, 2k } \right) ,\left( { -4-k,6-2k } \right)  } \right]  \\ \Rightarrow \dfrac { { 2-2k-2k } }{ { k+k-1 } } =\dfrac { { 2k-6+2k } }{ { -k+1+4+k } }  \\ \Rightarrow \dfrac { { 2-4k } }{ { 2k-1 } } =\dfrac { { 4x-6 } }{ 5 }  \\ \Rightarrow \left( { 1-2k } \right) 5=\left( { 2k-3 } \right) \left( { 2k-1 } \right)   \end{array}$$
    $$5-10k=4k^2-2k-6k+3$$
    $$4k^2+2k-2=0$$
    $$2k^2+k-1=0$$
    $$2k^2+2k-k-1=0$$
    $$2k(k+1)-1(k+1)=0$$
    $$(2k-1)(k+1)=0$$
    $$k=-1\, or\, \dfrac{1}{2}$$

    Hence,option $$B$$ is the correct answer.
  • Question 4
    1 / -0
    If $$A = \left[ \begin{array} { l l } { 1 } & { 2 } \\ { 2 } & { 1 } \end{array} \right]$$ then  $$adj (A) =?$$
    Solution
    Given, $$A = \left[ \begin{array} { l l } { 1 } & { 2 } \\ { 2 } & { 1 } \end{array} \right]$$

    The adjoin of a square matrix of order 2 is obtained by interchanging the diagonal elements & changing signs of off diagonal elements.
    adj (A) = $$A = \left[ \begin{array} { l l } { 1 } & { -2 } \\ { -2 } & { 1 } \end{array} \right]$$ 
  • Question 5
    1 / -0
    If a,b,c are distinct and $$\left| \begin{matrix} a & { a }^{ 2 } & { a }^{ 3 }-1 \\ b & { b }^{ 2 } & { b }^{ 3 }-1 \\ c & { c }^{ 2 } & { c }^{ 3 }-1 \end{matrix} \right| =0$$ then
    Solution
    $$\begin{vmatrix}a & a^2 & a^3-1\\  b & b^2 & b^3-1\\ c & c^2 & c^3-1\end{vmatrix} =0$$

    $$\Rightarrow  a(b^2c^3-b^2-c^2b^3+c^2)-a^2(bc^3-b-cb^3+c)+(a^3-1)(bc^2-cb^2)=0$$

    $$\Rightarrow  a (b^2c^2(c-b)+c^2-b^2)-a^2(bc(c^2-b^2)+c-b)+(a^3-1)bc(c-b)=0$$

    $$\Rightarrow a(b^2c^2(c-b)+(c-b)(c+b))-a^2(bc(c-b)(c+b)+(c-b))+bc(a^3-1)(c-b)=0$$

    $$\Rightarrow a(c-b)(b^2c^2+c+b)-a^2(c-b)(bc(c+b)+1)+bc(a^3-1)(c-b)=0$$

    $$\Rightarrow (c-b)\left \{ a(b^2c^2+c+b)-a^2(bc(c+b)+1)+bc(a^3-1) \right \}=0$$

    $$\Rightarrow(c-b)\left \{ ab^2c^2+ac+ab-a^2bc^2-a^2b^2c-a^2+a^3bc-bc \right \}=0$$

    $$\Rightarrow (c-b)\left \{ abc (bc-ac-ab+b^2)-(bc-ac-ab+a^2) \right \}=0$$

    $$\Rightarrow(c-b)(bc-ac-ab+a^2)(abc-1)=0$$

    $$\Rightarrow (c-b)(b(c-a)-a(c-a))(abc-1)=0$$

    $$\Rightarrow (c-b)(c-a)(b-a)(abc-1)=0$$

    $$\Rightarrow c-b=0 $$ or $$c-a =0$$ or $$ b-a =0$$

    $$\Rightarrow  c=b$$     $$ c=a$$   $$b=a$$

    which is not possible since $$a, b, c$$ are distinct.

    $$\therefore  abc -1=0$$

    $$\Rightarrow  abc=1$$
  • Question 6
    1 / -0
    If f(x), g(x), h(x) are polynomials in x of degree 2 and F(x)=$$\left| \begin{matrix} f & g & h \\ { f' } & g' & h' \\ f" & g" & h" \end{matrix} \right| ,$$ , then F(x) is equal to
    Solution
    $$\begin{array}{l} Let, \\ f\left( x \right) =a{ x^{ 2 } }+bx+c \\ f'\left( x \right) =2ax+b \\ f''\left( x \right) =2a \\ g\left( x \right) ={ a_{ 1 } }{ x^{ 2 } }+{ b_{ 1 } }x+{ c_{ 1 } } \\ g'\left( x \right) =2{ a_{ 1 } }x+{ b_{ 1 } } \\ g''\left( x \right) =2{ a_{ 1 } } \\ and, \\ h\left( x \right) ={ a_{ 2 } }{ x^{ 2 } }+{ b_{ 2 } }x+{ c_{ 2 } } \\ h'\left( x \right) =2{ a_{ 2 } }x+{ b_{ 2 } } \\ f\left( x \right) =\left| { \begin{array} { *{ 20 }{ c } }{ a{ x^{ 2 } }+bx+c } & { { a_{ 1 } }{ x^{ 2 } }+{ b_{ 1 } }x+{ c_{ 1 } } } & { { a_{ 2 } }{ x^{ 2 } }+{ b_{ 2 } }x+{ c_{ 2 } } } \\ { 2ax+b } & { 2{ a_{ 1 } }x+{ b_{ 1 } } } & { 2{ a_{ 2 } }x+{ b_{ 2 } } } \\ { 2a } & { 2{ a_{ 1 } } } & { 2{ a_{ 2 } } } \end{array} } \right|  \\ f'\left( x \right) =\left| { \begin{array} { *{ 20 }{ c } }{ 2ax+b } & { 2{ a_{ 1 } }x+{ b_{ 1 } } } & { 2{ a_{ 2 } }x+{ b_{ 2 } } } \\ { 2ax+b } & { 2{ a_{ 1 } }x+{ b_{ 1 } } } & { 2{ a_{ 2 } }x+{ b_{ 2 } } } \\ { 2a } & { 2{ a_{ 1 } } } & { 2{ a_{ 2 } } } \end{array} } \right| +0+0 \\ =0 \end{array}$$
    Hence, the option $$B$$ is the correct answer.
  • Question 7
    1 / -0
    If the point $$\left(\lambda+1,1\right),\left(2\lambda+1,3\right)$$ and $$\left(2\lambda+2,2\lambda\right)$$ are collinear then the possible value of $$\lambda$$ is
    Solution

  • Question 8
    1 / -0
    Solve $$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix}$$
    Solution
    Let
    $$\begin{array}{l}A= \left| { \begin{array} { *{ 20 }{ c } }1 & 1 & 1 \\ 1 & { 1+x } & 1 \\ 1 & 1 & { 1+y } \end{array} } \right|  \\ { R_{ 1 } }\to { R_{ 1 } }-{ R_{ 3 } }\, \, \, \, \, \, \, \, \, \, \, { R_{ 2 } }\to { R_{ 2 } }-{ R_{ 3 } } \\ A=\left| { \begin{array} { *{ 20 }{ c } }0 & 0 & { -y } \\ 0 & x & { -y } \\ 1 & 1 & { 1+y } \end{array} } \right|  \\ =-y\left( { 0-x } \right)  \\ =xy \end{array}$$
  • Question 9
    1 / -0
    If $${ D }_{ P }=\left| \begin{matrix} P & 15 & 8 \\ { P }^{ 2 } & 35 & 9 \\ { P }^{ 3 } & 25 & 10 \end{matrix} \right| ,$$ then $${ D }_{ 1 }+{ D }_{ 2 }+{ D }_{ 3 }+{ D }_{ 4 }+{ D }_{ 5 }$$ is equal to -
    Solution
    Given
    $$D_p=\begin{vmatrix} p & 15 & 8\\ p^2 & 35 & 9\\ p^3 & 25 & 10\end{vmatrix}$$
    $$=p(350-225)-15(10p^2-9p^3)+8(25p^2-35p^3)$$
    $$D_1=1(350-225)-15(10(1)^2-9(1)^3)+8(25(1)^2-35(1)^3)$$
    $$=125-15.(1)+8(-10)$$
    $$=125-80-15$$
    $$=125-95$$
    $$=30$$
    $$D_2=2(350-225)-15(10(2)^2-9(2)^3)+8(25(2)^2-35(2)^3)$$
    $$=2.(125)-15(40-72)+8(100-280)$$
    $$=250+15(32)-1440$$
    $$=730-1440$$
    $$=-710$$
    $$D_3=3(350-225)-15(10(3)^2-9(3)^3)+8(25(3)^2-35(3)^3)$$
    $$=3.(125)-15(90-243)+8(225-945)$$
    $$=375+15(153)-8(720)$$
    $$=375+2,295-5760$$
    $$=-3090$$.
    $$D_4=4(350-225)-15(10(4)^2-9(4)^3)+8(25(4)^2-35(4)^3)$$
    $$=4.(125)-15(160-576)+8(400-2240)$$
    $$=500+6240-8.(1840)$$
    $$=5740-14720$$
    $$=-8980$$
    $$D_5=5(350-225)-15(10(5)^2-9(5)^3)+8(25(5)^2-35(5)^3)$$
    $$=5(125)-15(250-1125)+8(625-4375)$$
    $$=625+13125+(-30,000)$$
    $$=-16250$$.
    $$\therefore D_1+D_2+D_3+D_4+D_5=30-710-3090-8980-16250$$
    $$=-29000$$.

  • Question 10
    1 / -0
    The value of determinant $$\left| \begin{matrix} { bc-a }^{ 2 } & { ac-b }^{ 2 } & ab-c^{ 2 } \\ { ac-b }^{ 2 } & { ab-c }^{ 2 } & { bc-a }^{ 2 } \\ { ab-c }^{ 2 } & { bc-a }^{ 2 } & ac-b^{ 2 } \end{matrix} \right| $$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now