$${ a }_{ 1 }x+{ b }_{ 1 }y-{ c }_{ 1 }=0\quad \Rightarrow { a }_{ 1 }x+{ b }_{ 1 }y={ c }_{ 1 }$$
$${ a }_{ 2 }x+{ b }_{ 2 }y-{ c }_{ 2 }=0\quad \Rightarrow { a }_{ 2 }x+{ b }_{ 2 }y={ c }_{ 2 }$$
then the solution of $$x$$ and $$y$$ can be obtained by evaluating the following integral :
$$x=\frac { \left| \underset { { c }_{ 2 } }{ { c }_{ 1 } } \quad \underset { { b }_{ 2 } }{ { b }_{ 1 } } \right| }{ \left| \underset { { a }_{ 2 } }{ { a }_{ 1 } } \quad \underset { { b }_{ 2 } }{ { b }_{ 1 } } \right| } $$ and $$y=\dfrac { \left| \underset { { a }_{ 2 } }{ { a }_{ 1 } } \quad \underset { { c }_{ 2 } }{ { c }_{ 1 } } \right| }{ \left| \underset { { a }_{ 2 } }{ { a }_{ 1 } } \quad \underset { { b }_{ 2 } }{ { b }_{ 1 } } \right| } $$
$$\therefore$$ $$x+y=3$$
$$3x-2y=4$$
can be solved using the above method
$$x=\dfrac { \left| \underset { 4 }{ 3 } \quad \underset { -2 }{ 1 } \right| }{ \left| \underset { 3 }{ 1 } \quad \underset { -2 }{ 1 } \right| } \quad ;\quad y=\dfrac { \left| \underset { 3 }{ 1 } \quad \underset { 4 }{ 3 } \right| }{ \left| \underset { 3 }{ 1 } \quad \underset { -2 }{ 1 } \right| } $$
$$x=\dfrac { -6-4 }{ -2-3 } \quad ;\quad y=\dfrac { 4-9 }{ -5 } $$
$$x=\dfrac { 10 }{ -5 } \quad ;\quad y=\dfrac { -5 }{ -5 } $$
$$x=2\quad ;\quad y=1$$
now the quantity $$\left| \underset { 3 }{ 1 } \quad \underset { -2 }{ 1 } \right| =D$$ (determinant)
$$D=\left| \underset { 3 }{ 1 } \quad \underset { -2 }{ 1 } \right| =-5$$
So, answer is option C.