Self Studies

Determinants Test - 57

Result Self Studies

Determinants Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A=\begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$$, then $$\text{adj}$$ $$(3{ A }^{ 2 }+12A)$$ is equal to 
    Solution
    $$A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$$ then

    $$A^2 = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} \, \begin{bmatrix} 2 & -3\\ -4 &1 \end{bmatrix}$$

    $$A^2 = \begin{bmatrix} 16 & -9 \\ -12 & 13 \end{bmatrix}$$

    $$3A^2 = \begin{bmatrix} 48 & -27 \\ -36 & 39 \end{bmatrix}$$

    $$3A^2 + 12 A = \begin{bmatrix} 48 & -27 \\ -36 & 39 \end{bmatrix} + \begin{bmatrix} 24 & -36 \\ -48 & 12 \end{bmatrix} = \begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$$

    $$adj (3A^2 + 12 A) = \begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$$
  • Question 2
    1 / -0
    If $$\begin{bmatrix} 1 & \alpha  & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$$ is the adjoint of a $$3\times 3$$ matrix $$A$$ and $$|A|=4$$, then $$\alpha$$ is equal to:
    Solution
    $$\begin{vmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{vmatrix} = 1 \left( 3 \times 4 - 3 \times 4 \right) - \alpha \left( 1 \times 4 - 3 \times 2 \right) + 3 \left( 1 \times 4 - 3 \times 2 \right) = 2 \alpha - 6$$
    $$\begin{vmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{vmatrix} = \begin{vmatrix} adj. \; A \end{vmatrix}$$
    $$\Rightarrow \left( 2 \alpha - 6 \right) = \begin{vmatrix} adj. \; A \end{vmatrix}$$
    Now,
    $$\begin{vmatrix} adj. \; A \end{vmatrix} = {\left| A \right|}^{3 - 1} = {4}^{2} = 16$$
    $$\therefore 2 \alpha - 6 = 16$$
    $$\Rightarrow 2 \alpha = 16 + 6$$
    $$\Rightarrow \alpha = \cfrac{22}{2} = 11$$
  • Question 3
    1 / -0
    If  $$\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{vmatrix}$$ = $$(A+Bx)(x-A)^2$$,
    then the ordered pair $$(A , B)$$ is equal to:  
    Solution
    $$\left|\begin{matrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{matrix}\right|=$$ $$(x-4)[(x-4)^2-4x^2]-2x[2x(x-4)-4x^2]+2x[4x^2-2x(x-4)]$$
                                               $$=(x-4)[x^2+16-8x-4x^2]-2x[2x^2-8x-4x^2]+2x[4x^2-2x^2+8x]$$
                                               $$=(x-4)[16-8x-3x^2]-2x[-8x-2x^2]+2x[2x^2+8x]$$
                                               $$=(x-4)(16-8x-3x^2)+4x[2x^2+8x]$$
                                               $$=16x-8x^2-3x^3-64+32x+12x^2+8x^3+32x^2$$
                                               $$=5x^3+36x^2+48x-64$$

    $$(A+Bx)(x-A)^2=(A+Bx)(x^2+A^2-2xA)$$
                                      $$=Ax^2+A^3-2xA^2+Bx^3+BA^2x-2ABx^2$$
                                      $$=Bx^3+(A-2AB)x^2+(BA^2-2x)x+A^3$$
    $$B=5$$   $$A-2AB=36$$
                $$A(1-2B)=36$$
                 $$A(1-10)=36$$
                                $$A=-4$$
    $$\therefore (A,B)=(-4,5)$$ .
  • Question 4
    1 / -0
    If  $$\left| \begin{array} { c c } { 1 } & { \sin x } & { \sin ^ { 2 } x } \\ { 1 } & { \cos x } & { \cos ^ { 2 } x } \\ { 1 } & { \tan x } & { \tan ^ { 2 } x } \end{array} \right| = 0 , x \in [ 0,2 \pi ] ,$$ then number of possible values of  $$x$$  is.
    Solution

    $$\left| \overset { 1 }{ \underset { 1 }{ 1 }  } \quad \overset { sinx }{ \underset { tanx }{ cosx }  } \quad \overset { { \sin }^{ 2 }x }{ \underset { { \tan }^{ 2 }x }{ { \cos }^{ 2 }x }  }  \right| =0$$
    $$\left( \underset { { R }_{ 2 }\rightarrow { R }_{ 2 }-{ R }_{ 3 } }{ { R }_{ 1 }\rightarrow { R }_{ 1 }-{ R }_{ 2 } }  \right) $$
    $$\Rightarrow \left| \overset { 0 }{ \underset { 1 }{ 0 }  } \quad \quad \overset { sinx-cosx }{ \underset { tanx }{ cosx-tanx }  } \quad \quad \overset { { \sin }^{ 2 }x-{ \cos }^{ 2 }x }{ \underset { { \tan }^{ 2 }x }{ { \cos }^{ 2 }x-{ \tan }^{ 2 }x }  }  \right| =0$$
    $$\Rightarrow \underset { \left( cosx-tanx \right)  }{ \left( sinx-cosx \right)  } \left| \overset { 0 }{ \underset { 1 }{ 0 }  } \quad \quad \overset { 1 }{ \underset { tanx }{ 1 }  } \quad \quad \overset { sinx+cosx }{ \underset { { \tan }^{ 2 }x }{ cosx+tanx }  }  \right| =0$$
    Expanding along colomn I we get
    $$\Rightarrow \left( cosx-tanx \right) \left( sinx-cosx \right) \left( cosx+tanx-sinx-cosx \right) =0$$
    $$\Rightarrow \left( cosx-tanx \right) \left( sinx-cosx \right) \left( tanx-sinx \right) =0$$
    $$\therefore$$   $$cosx-tanx=0$$  or  $$sinx=cosx$$  or  $$tanx=sinx$$
    or  $$cosx=tanx$$  ;  $$sinx=cosx$$  ;  $$tanx=sinx$$
    for $$x\epsilon \left[ 0,2\pi  \right] $$
    $$csox=tanx$$
    from graph we see there are $$2$$ solutions.
    for $$x\epsilon \left[ 0,2\pi  \right] $$
    $$sinx=cosx$$
    from graph we have two solutions
    for $$x\epsilon \left[ 0,2\pi  \right] $$
    from graph we have solutions
    So a total of $$2+2+3=7$$ solutions 
    i.e Answer : D.

  • Question 5
    1 / -0
    For what value of x, will the points (-1,x),(-3,2) and (-4,4) lie on a line?
    Solution
    $$A(-1, x), B(-3, 2), C(-4, 4)$$ lie on a line
    $$\therefore \dfrac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|=0$$
    $$\dfrac{1}{2}\left|-1(2-4)+-3(4-x)+-4(x-2)\right|=0$$
    $$\dfrac{1}{2}\left|-1(-2)-3(4-x)-4(x-2)\right|=0$$
    $$\dfrac{1}{2}\left|2-3\times 4+3x-4x+4\times 2\right|=0$$
    $$\dfrac{1}{2}\left|2-12+3x-4x+8\right|=0$$
    $$\dfrac{1}{2}\left|-2-x\right|=0$$
    $$-2-x=0$$
    $$x=-2$$.

  • Question 6
    1 / -0
    If $$\left|( {adj\,A}) \right| = 81,$$ for $$3 \times 3$$ matrix, then det $$A$$ is equal to 
    Solution
    Given for a square matrix $$A$$ of order $$3$$.

    $$|adjA|=|A|^{n-1}$$,  where $$n$$ is the order of matrix.

    We have, $$|adj(A)|=|A|^{(3-1)}$$

    or, $$|A|^2=81$$

    or, $$|A|=9$$. [ Taking the positive value]
  • Question 7
    1 / -0
    The point $$(x_{1}, y_{1}), (x_{2}, y_{2}), (x_{1}, y_{2})$$ & $$(x_{2}, y_{1})$$ are always
    Solution
    Let the coordinates be denoted as $$A(x_1,y_2)$$, $$B(x_2,y_2)$$, $$C(x_2,y_1)$$ and $$D(x_1,y_1)$$
    Plot the given points on a graph as above,
    It is not necessary that
    $$|x_2-x_1|=|y_2-y_1|$$
    With $$(x_2,y_1)$$ and $$(x_1,y_2)$$ as ends of diameter $$\angle ABC=90^{\circ}$$ and $$\angle ADC=90^{\circ}$$
    $$\therefore ABCD$$ are concyclic.
    So, $$\text{B}$$ is the correct option.

  • Question 8
    1 / -0
    $$|A|=6$$ and $$A$$ is $$3\times 3$$ matrix then $$det(2\ adj(2(A^{-1})^{T}))=$$
  • Question 9
    1 / -0
    Find the value of $$\begin{vmatrix} 5 & 3 \\ -7 & -4 \end{vmatrix}$$
    Solution
    $$\begin{vmatrix} 5 & 3 \\ -7 & -4 \end{vmatrix}$$ $$= 5 \times (-4) - 3 \times (-7) = -20 + 21 = 1$$
    Hence, the correct answer is 1.
  • Question 10
    1 / -0
    If a determinant of order $$3\times 3$$ is formed by using the numbers $$1$$ or $$-1$$, then the minimum value of the determinant is?
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now