$$\left| \overset { 1 }{ \underset { 1 }{ 1 } } \quad \overset { sinx }{ \underset { tanx }{ cosx } } \quad \overset { { \sin }^{ 2 }x }{ \underset { { \tan }^{ 2 }x }{ { \cos }^{ 2 }x } } \right| =0$$
$$\left( \underset { { R }_{ 2 }\rightarrow { R }_{ 2 }-{ R }_{ 3 } }{ { R }_{ 1 }\rightarrow { R }_{ 1 }-{ R }_{ 2 } } \right) $$
$$\Rightarrow \left| \overset { 0 }{ \underset { 1 }{ 0 } } \quad \quad \overset { sinx-cosx }{ \underset { tanx }{ cosx-tanx } } \quad \quad \overset { { \sin }^{ 2 }x-{ \cos }^{ 2 }x }{ \underset { { \tan }^{ 2 }x }{ { \cos }^{ 2 }x-{ \tan }^{ 2 }x } } \right| =0$$
$$\Rightarrow \underset { \left( cosx-tanx \right) }{ \left( sinx-cosx \right) } \left| \overset { 0 }{ \underset { 1 }{ 0 } } \quad \quad \overset { 1 }{ \underset { tanx }{ 1 } } \quad \quad \overset { sinx+cosx }{ \underset { { \tan }^{ 2 }x }{ cosx+tanx } } \right| =0$$
Expanding along colomn I we get
$$\Rightarrow \left( cosx-tanx \right) \left( sinx-cosx \right) \left( cosx+tanx-sinx-cosx \right) =0$$
$$\Rightarrow \left( cosx-tanx \right) \left( sinx-cosx \right) \left( tanx-sinx \right) =0$$
$$\therefore$$ $$cosx-tanx=0$$ or $$sinx=cosx$$ or $$tanx=sinx$$
or $$cosx=tanx$$ ; $$sinx=cosx$$ ; $$tanx=sinx$$
for $$x\epsilon \left[ 0,2\pi \right] $$
$$csox=tanx$$
from graph we see there are $$2$$ solutions.
for $$x\epsilon \left[ 0,2\pi \right] $$
$$sinx=cosx$$
from graph we have two solutions
for $$x\epsilon \left[ 0,2\pi \right] $$
from graph we have solutions
So a total of $$2+2+3=7$$ solutions
i.e Answer : D.