Self Studies

Determinants Test - 60

Result Self Studies

Determinants Test - 60
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$A$$ be a square matrix of order $$3\times 3$$ then $$\left| KA \right| $$ is equal to
    Solution
    $$Using \space properties \space of \space determinant$$
    $$|kA|=k^{n}|A|$$
    $$where \space n \space is \space order \space determinant$$
    $$Since \space given \space matrix \space  A \space has \space order \space 3$$
    $$hence\space\left| kA \right| ={k}^{3}\left| A \right| $$

  • Question 2
    1 / -0
    Find the equation of line joining $$(1,2)$$ and $$(3,6)$$ using determinants. Let $$p(x,y)$$ be any point on the line joining $$(1,2)(3,6)$$
    Solution
    Equation of line joining $$(1,2)$$ and $$(3,6)$$ can be obtained by
    $$\begin{vmatrix} x & y & 1 \\ 1 & 2 & 1 \\ 3 & 6 & 1 \end{vmatrix}=0$$
    $${R}_{2}\Rightarrow {R}_{2}-{R}_{1}$$; $${R}_{3}\Rightarrow {R}_{3}-{R}_{1}$$
    $$\begin{vmatrix} x & y & 1 \\ 1-x & 2-y & 0 \\ 3-x & 6-y & 0 \end{vmatrix}$$
    expanding along
    $${C}_{3}=1[(1-x)(6-y)-(3-x)(2-y)]=0$$
    $$=(6-y-6x+xy-6+3y+2x-xy)$$
    $$2y-4x=0$$ or $$y=2x$$
  • Question 3
    1 / -0
    Value of determinant $$\begin{vmatrix} \cos 80^\circ & -\cos 10^\circ\\ \sin 80^\circ & \sin 10^\circ \end{vmatrix}$$ is:
    Solution
    $$\begin{vmatrix} \cos 80^\circ & -\cos 10^\circ\\ \sin 80^\circ & \sin 10^\circ \end{vmatrix}$$

    $$=\cos 80^\circ \sin 10^\circ - (- \cos 10^\circ) sin 80^\circ$$
    $$=\cos 80^\circ \sin 10^\circ + \cos 10^\circ sin 80^\circ$$
    $$= \sin (10^\circ + 80^\circ)$$
    $$= \sin 90^\circ = 1$$
  • Question 4
    1 / -0
    Find the equation of the line joining $$(3,1)$$ and $$(9,3)$$ using determinants.
    Solution
    Let $$p(x,y)$$ be any point on the line joining $$(3,1)$$ and $$(9,3)$$
    $$\begin{vmatrix} x & y & 1 \\ 3 & 1 & 1 \\ 9 & 3 & 1 \end{vmatrix}=0$$
    $${R}_{2}\Rightarrow {R}_{2}-{R}_{1}$$; $${R}_{3}\Rightarrow {R}_{3}-{R}_{1}$$
    $$\begin{vmatrix} x & y & 1 \\ 3-x & 1-y & 0 \\ 9-x & 3-y & 0 \end{vmatrix}=0$$
    $$\Rightarrow$$ $$1[(3-x)(3-y)-(1-y)(9-x)]=0$$
    $$\Rightarrow$$ $$9-3y-3x+xy+x-9+9y-xy=0$$
    $$\Rightarrow$$ $$6y-2x=0$$
    $$\Rightarrow$$ $$x=3y$$
  • Question 5
    1 / -0
    Value of determinant $$\begin{vmatrix} \cos 50^\circ & \sin 10^\circ\\ \sin 50^\circ & \cos 10^\circ \end{vmatrix}$$ is:
    Solution
    $$\begin{vmatrix} \cos 50^\circ & \sin 10^\circ\\ \sin 50^\circ & \cos 10^\circ \end{vmatrix}$$
    $$=\cos 50^\circ  \cos 10^\circ - \sin 50^\circ  \sin 10^\circ$$
    $$= \cos (50^\circ + 10^\circ)$$
    $$= \cos 60^\circ =\dfrac{1}{2}$$
    So, option (c) is correct.
  • Question 6
    1 / -0
    Co-factors of the first column of determinant
    $$\begin{vmatrix} 5 & 20 \\ 3 & -1\end{vmatrix}$$
    Solution
    $$\begin{vmatrix} 5 & 20 \\ 3 & -1\end{vmatrix}$$
    Co-factor of $$a_{11}$$
    $$F_{11} = (- 1)^2 M_{11}$$
    $$= 1 \times (- 1) = - 1$$
    Co-factor of $$a_{12}$$
    $$F_{21} = (-1)^{11}\,M_{21}$$
    $$= (- 1) × 20 = - 20$$
  • Question 7
    1 / -0
    If $$a, b, c$$ are the $$p^{th}, q^{th}$$ and $$r^{th}$$ terms of an $${H}.{P}$$, then the lines $$bcx+py+1=0,\ cax+ qy+1=0$$ and $$abx+ry+1=0$$,
    Solution
    Given $$a,b,c$$ are $$p^{th} , q^{th} , r^{th}$$ terms of H.P. respectively.
    $$\Rightarrow \displaystyle \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$$ are $$p^{th} , q^{th} , r^{th}$$ terms of A.P. respectively.

    Let $$A$$ be the first term and d be the common difference
    $$T_p=A+(p-1)d$$
    $$\displaystyle \frac{1}{a}=A+(p-1)d$$         .....(1)

    $$T_q=A+(q-1)d$$
    $$\displaystyle \frac{1}{b}=A+(q-1)d$$         .....(2)

    $$T_r=A+(r-1)d$$
    $$\displaystyle \frac{1}{c}=A+(r-1)d$$         .....(3)

    Subtracting (2) from (1),  we get
    $$\displaystyle \frac{1}{a}-\frac{1}{b}=(p-q)d$$
    $$\Rightarrow \displaystyle ab(p-q)=\frac{b-a}{d}$$       .....(4)

    Subtracting (3) from (2),  we get
    $$\displaystyle \frac{1}{b}-\frac{1}{c}=(q-r)d$$
    $$\Rightarrow \displaystyle bc(q-r)=\frac{c-b}{d}$$      .....(5)

    Subtracting (3) from (1),  we get
    $$\displaystyle \frac{1}{a}-\frac{1}{c}=(p-r)d$$
    $$\Rightarrow \displaystyle ac(p-r)=\frac{c-a}{d}$$      .....(6)

    Now, consider $$\begin{vmatrix} bc & p & 1 \\ ca & q & 1 \\ ab & r & 1 \end{vmatrix}$$
    (The above matrix is the matrix representation of the given equations)

    Expanding along first column, we get
    $$=bc(q-r)-ca(p-r)+ab(p-q)$$
    $$=\displaystyle \frac{c-b}{d}-\frac{c-a}{d}+\frac{b-a}{d}$$
    $$=0$$

    Hence, the given lines are concurrent.

    Hence, option A.
  • Question 8
    1 / -0
    If $$x_{1},y_{1}$$ are the roots of $$x^{2}+8x-20=0$$ and  $$x_{2},y_{2}$$ are the roots of $$4x^{2}+32x-57=0$$ and $$x_{3},y_{3}$$ are the roots of $$9x^{2}+72x-112=0$$ such that $$y_{i}<0,$$ then the points $$(x_{1},y_{1}),(x_{2},y_{2})$$ and $$(x_{3},y_{3})$$
    Solution
    $$x^{2}+8x-20=0$$
    $$\rightarrow (x+10)(x-2)=0$$
    $$x=-10,x=2$$
    Therefore 
    $$(x_{1},y_{1})=(2,-10)$$...(i)

    Similarly
    $$4x^{2}+32x-57=0$$
    $$(x-\dfrac{3}{2})(x+\dfrac{19}{2})=0$$

    $$x=\dfrac{3}{2},\dfrac{-19}{2}$$
    Hence 
    $$(x_{2},y_{2})=(\dfrac{3}{2},\dfrac{-19}{2})$$...(ii)

    $$9x^{2}+72x-112=0$$

    $$(x-\dfrac{4}{3})(x+\dfrac{28}{3})=0$$

    $$x=\dfrac{4}{3},\dfrac{-28}{3}$$
    Hence
    $$(x_{3},y_{3})=(\dfrac{4}{3},\dfrac{-28}{3})$$...(iii)
    Therefore the three points are
    $$A=(x_{1},y_{1})=(2-10)$$

    $$B=(x_{2},y_{2})=(\dfrac{3}{2},\dfrac{-19}{2})$$

    $$C=(x_{3},y_{3})=(\dfrac{4}{3},\dfrac{-28}{3})$$

    Thus, there are two possibilities
    I) The points are co-linear.
    II) The points are non-co-linear (forming a triangle).
    Hence, first we check for co-linearity.
    If the points are co-linear, then the must lie on a single straight line.

    The equation of the line passing through $$A=(2,-10)$$ and $$B=(\dfrac{3}{2},\dfrac{-19}{2})$$ is 

    $$\dfrac{y+10}{x-2}=\dfrac{y+\dfrac{19}{2}}{x-\dfrac{3}{2}}$$

    $$\rightarrow x+y=-8$$.
    Now if C is collinear with A and B, then it must satisfy the above equation of the straight line.
    Substituting $$C=(x_{3},y_{3})$$ in the given line gives us 

    $$\dfrac{4}{3}-\dfrac{28}{3}$$

    $$=\dfrac{-24}{3}$$

    $$=-8$$

    $$=RHS$$

    Hence the points are collinear.
  • Question 9
    1 / -0
    If the lines $$\mathrm{x}+\mathrm{p}\mathrm{y}+\mathrm{p}=0,\ \mathrm{q}\mathrm{x}+\mathrm{y}+\mathrm{q}=0$$ and $$\mathrm{r}\mathrm{x}+\mathrm{r}\mathrm{y}+1 =0 (\mathrm{p},\mathrm{q}, \mathrm{r}$$ being distinct and $$ \neq$$ 1) are concurrent, then the value of
    $$\displaystyle \frac{p}{p-1}+\frac{q}{q-1}+\frac{r}{r-1}=$$
    Solution
    $$x+py+p=0$$
    $$qx+y+q=0$$
    $$rx+ry+1=0$$
    $$\begin{vmatrix} 1 & p & p \\ q & 1 & q \\ r & r & 1 \end{vmatrix}$$
    $$\left( 1-qr \right) -p\left( q-pqr \right) +p\left( qr-r \right) =0$$
    $$1-qr-pq+pqr+pqr-pr=0$$
    $$qr(p-1)+pr(q-1)-pq(r-1)-pqr=0$$
    $$\Rightarrow \cfrac { p }{ p-1 } +\cfrac { q }{ q-1 } +\cfrac { r }{ r-1 } =1$$
    Option A
  • Question 10
    1 / -0
    The coordinates of the point $$P$$ on the line $$2x+3y+1=0$$ such that $$|PA-PB|$$ is maximum, where $$A(2, 0)$$ and $$B(0, 2)$$ is
    Solution
    Given Point $$P(x_{1},y_{1})$$ lies on
    $$2x+3y+1=0$$-----(1)
    Given points $$A(2,0),B(0,2)$$
    maximum value of $$\left | PA-PB \right | $$ is equal to the $$AB$$
    consider PAB is triangle then
    from Triangular inequalities 
    $$PB+AB>PA$$
    $$\left | PA-PB \right |<PA$$-------(2)
    Now $$PA=\sqrt{(0-2)^2+(2-0)^2}$$
    $$PA=\sqrt{8}$$
    $$PA=2\sqrt{2}$$
    from eq (2)
    $$2\sqrt{2}>\left | PA-PB \right |$$ is similar to 
    $$2\sqrt{2}>$$eq of line $$AB$$
    on solving above eq we get 
    $$y_{1}=-1(x_{1}-2)$$
    $$y_{1}=-x_{1}+2$$
    $$x_{1}+y_{1}=2$$----(3)
    Point P lies in line (1) 
    $$2x_{1}+3y_{1}=-1$$----(4)
    from eq (3) and (4)
    $$x_{1}=7,y_{1}=-5$$
    Point $$P(7,-5)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now