Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    If the lines $$p_{1}x+q_{1}y=1,p_{2}x+q_{2}y=1 $$ and $$ p_{3}x+q_{3}y=1$$ be concurrent, then the points $$(p_{1},q_{1}),(p_{2},q_{2})$$ and $$(p_{3},q_{3})$$ ,

  • Question 2
    1 / -0

    If the lines $${x}+{a}{y}+{a}=0,\ {b}{x}+{y}+{b}=0,\ {c}{x}+{c}{y}+1 =0 ({a}\neq{b}\neq {c}\neq1)\ $$ are concurrent, then the value of $$\displaystyle \frac{{a}}{{a}-1}+\frac{{b}}{{b}-1}+\frac{{c}}{{c}-1}$$, is

  • Question 3
    1 / -0

    If $$x_1, x_2, x_3$$ as well as $$y_1, y_2, y_3$$ are in G.P. with same common ratio, then the points $$P(x_1, y_1), Q (x_2, y_2)$$ and $$R(x_3, y_3)$$

  • Question 4
    1 / -0

    Directions For Questions

    Let $$A= \begin{bmatrix} 1& 0 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0\end{bmatrix}$$ satisfies $$A^n = A^{n - 2} + A^2 - I$$ for $$n \geq 3$$. and trace of a square matrix $$X$$ is equal to the sum of elements in its principal diagonal. Further consider a matrix $$\displaystyle \bigcup_{3 \times 3}$$ with its column as $$\cup_1, \cup_2, \cup_3$$ such that $$A^{50} \cup_1 = \begin{bmatrix}1\\25 \\ 25\end{bmatrix}, A^{50} \cup_2 = \begin{bmatrix}0\\ 1 \\ 0\end{bmatrix}, A^{50} \cup_3 = \begin{bmatrix}0\\ 0 \\ 1\end{bmatrix}$$ Then answer of  the following question:

    ...view full instructions

    The values of $$|A^{50}|$$ equals

  • Question 5
    1 / -0

    Directions For Questions

    Let $$A= \begin{bmatrix} 1& 0 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0\end{bmatrix}$$ satisfies $$A^n = A^{n - 2} + A^2 - I$$ for $$n \geq 3$$. and trace of a square matrix $$X$$ is equal to the sum of elements in its principal diagonal. Further consider a matrix $$\displaystyle \bigcup_{3 \times 3}$$ with its column as $$\cup_1, \cup_2, \cup_3$$ such that $$A^{50} \cup_1 = \begin{bmatrix}1\\25 \\ 25\end{bmatrix}, A^{50} \cup_2 = \begin{bmatrix}0\\ 1 \\ 0\end{bmatrix}, A^{50} \cup_3 = \begin{bmatrix}0\\ 0 \\ 1\end{bmatrix}$$ Then answer of  the following question:

    ...view full instructions

    The value of $$|\cup|$$ equals

  • Question 6
    1 / -0

    If A is a square matrix of order 3, then $$|(A - A^T)^{105}|$$ is equal to

  • Question 7
    1 / -0

    Let $$ \begin{vmatrix}
     1+x         &                 x        &                x^{2}\\
       x           &               1+x   &                       x^{2} \\
      x^{2}        &                x       &                1+x
    \end{vmatrix} =   ax^{5} + bx^{4} + cx^{3} + dx^{2} + \lambda x + \mu $$ be an identity in x, where a,b,c,d,$$ \lambda, \mu$$ are independent of x. Then the value of $$\lambda$$ is

  • Question 8
    1 / -0

    Directions For Questions

    Consider an arbitrary $$3 \times 3 matrix A = [a_{ij}].  A  matrix  B = [b_{ij}]$$ is formed such that $$b_{ij}$$ is the sum of all the elements except $$a_{ij}$$ in the ith row of A. Answer the following questions

    ...view full instructions

    The value of |B| is equal to

  • Question 9
    1 / -0

    If the points $$\displaystyle(-2,0),(-1,\dfrac{1}{\sqrt{3}})$$ and $$\displaystyle(\cos\theta,\sin \theta)$$ are collinear, then the number of values of $$\displaystyle \theta \in [0,2\pi]$$ :

  • Question 10
    1 / -0

    Let $$\begin{vmatrix} x& 2 & x\\ x^2 & x & 6\\ x & x & 6\end{vmatrix}  = \alpha x^4 + \beta x^3 + \gamma x^2 + \delta x + \lambda$$ then the value of $$5 \alpha + 4 \beta + 3\gamma + 2 \delta + \lambda = $$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now