Self Studies

Determinants Test - 63

Result Self Studies

Determinants Test - 63
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$a_{1}, a_{2}, ...., a_{n}$$, ..... are in G.P. then $$\begin{vmatrix}\log a_{n} & \log a_{n + 1} & \log a_{n + 2}\\ \log a_{n + 3} & \log a_{n + 4} & \log a_{n + 5}\\ \log a_{n + 6} & \log a_{n + 7} & \log a_{n + 8}\end{vmatrix}$$ is
    Solution
    We know that $$\dfrac{a_2}{a_1}=\dfrac{a_3}{a_2}=.......\dfrac{a_{n}}{a_{n-1}}=r$$
    which means that $$a_n,a_{n+1}$$ and $$a_{n+2}$$ are in G.P
    So,
    $$a^{2}_{n+1}=a_n \times a_{n+2}$$
    Taking log on both the sides, we get
    $$2 log\ {a_{n+1}}=log\ {a_{n}}+log{a_{n+2}}$$
    $$2 log\ {a_{n+1}}-log\ {a_{n}}-log\ {a_{n+2}}=0$$     --------(1)
    Similarly,
    $$2 log\ {a_{n+4}}-log\ {a_{n+3}}-log\ {a_{n-5}}=0$$    -------(2)
    $$2 log\ {a_{n+7}}-log\ {a_{n+6}}-log\ {a_{n+8}}=0$$  ---------(3)
    Apply the operation on column, we get
    $$C_{1}\rightarrow 2C_2-C_1-C_3$$
    $$det(A)=0$$
  • Question 2
    1 / -0
    The coefficient of $${x}^{2}$$ in the expansion of the determinant
    $$\begin{vmatrix} { x }^{ 2 } & { x }^{ 3 }+1 & { x }^{ 5 }+2 \\ { x }^{ 3 }+3 & { x }^{ 2 }+x & { x }^{ 3 }+{ x }^{ 4 } \\ x+4 & { x }^{ 3 }+{ x }^{ 4 } & { 2 }^{ 3 } \end{vmatrix}$$ is
    Solution
    For the coefficient of $${x}^{2}$$ on expanding along $$R$$ we get
    $$\Delta ={ x }^{ 2 }\left[ 8{ x }^{ 2 }+8x-{ x }^{ 6 }-2{ x }^{ 7 }-{ x }^{ 8 } \right]-\left( { x }^{ 2 }+1 \right)$$ 
    $$\left[ 8{ x }^{ 3 }+24-{ x }^{ 4 }-{ x }^{ 6 }-4{ x }^{ 3 }-4{ x }^{ 4 } \right] +\left( { x }^{ 5 }+2 \right)$$ 
    $$\left[ { x }^{ 6 }+{ x }^{ 7 }+3{ { x }^{ 3 }-3{ x }^{ 4 }-{ x }^{ 3 }-x }^{ 2 }-4{ x }^{ 2 }-4x \right] $$
    $$= 8x^4+8x^3-x^5-2x^9-x^{10}-8x^6-24x^3+x^7+x^6+4x^6+4x^7-8x^3-24$$
    $$-x^4+x^5+4x^3+4x^4+x^{11}+x^{12}+3x^8+3x^9-x^8-x^7-4x^7-4x^7-4x^6+2x^6$$
    $$+2x^7+6x^3+6x^4-2x^3-2x^2-8x^2-8x$$
    Coefficient of $${x}^{2}=-2-8=-10$$ 
  • Question 3
    1 / -0
    The value of $$x$$ satisfying the equation $$\begin{vmatrix}\cos 2x & \sin 2x & \sin 2x\\ \sin 2x & \cos 2x & \sin 2x\\ \sin 2x & \sin 2x & \cos 2x\end{vmatrix} = 0$$ and $$x\epsilon \left [0, \dfrac {\pi}{4}\right ]$$ is
    Solution
    Given, $$\begin{vmatrix}\cos 2x & \sin 2x & \sin 2x\\ \sin 2x & \cos 2x & \sin 2x\\ \sin 2x & \sin 2x & \cos 2x\end{vmatrix} = 0; x\epsilon \left [0, \dfrac {\pi}{4}\right ]$$
    Applying operation: $$R_{1}\rightarrow R_{1} + R_{2} + R_{3}$$, we get
    $$\begin{vmatrix}\cos 2x + 2\sin 2x & 2 \sin 2x + \cos 2x & 2 \sin 2x + \cos 2x \\ \sin 2x & \cos 2x & \sin 2x\\ \sin 2x & \sin 2x & \cos 2x\end{vmatrix} = 0$$
    $$\Rightarrow (2\sin 2x + \cos 2x) \begin{vmatrix}1 & 1 & 1\\ \sin 2x & \cos 2x & \sin 2x\\ \sin 2x & \sin 2x & \cos 2x\end{vmatrix} = 0$$
    Now, apply operation
    $$C_{2}\rightarrow C_{2} - C_{1}$$ and $$C_{3} \rightarrow C_{3} - C_{1}$$, we get
    $$(2\sin 2x + \cos 2x)$$
    $$\begin{vmatrix}1 & 0 & 0\\ \sin 2x & \cos 2x - \sin 2x & 0\\ \sin 2x & 0 & \cos 2x - \sin 2x\end{vmatrix} = 0$$
    Expanding along $$R_{1}$$, we get
    $$(2\sin 2x + \cos 2x) (\cos 2x - \sin 2x)^{2} = 0$$
    $$\Rightarrow 2\sin 2x + \cos 2x = 0$$
    or $$\cos 2x - \sin 2x = 0$$
    $$\Rightarrow \tan 2x = -\dfrac {1}{2}$$
    or $$\tan 2x = 1 = \tan \dfrac {\pi}{4}$$
    $$\because x\neq \dfrac {1}{2} \tan^{-1}\left (\dfrac {-1}{2}\right )$$
    $$\therefore x = \dfrac {\pi}{8}\epsilon \left [0, \dfrac {\pi}{4}\right ]$$.
  • Question 4
    1 / -0
    If the determinant $$\begin{vmatrix} a+p & 1+x & u+f \\ b+q & m+y & v+g \\ c+r & n+z & w+h \end{vmatrix}$$ splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is
  • Question 5
    1 / -0
     Points (a, 0), (0, b) and (1, 1)are collinear, if:
    Solution
    $$\textbf{Step 1: Calculating}$$
                    $$\text{The given points are }(a,0),(0,b),(1,1)$$
                    $$\implies \text{Slope of line connecting }(a,0)\text{ and }(0,b)=\text{Slope of line connecting }(0,b) \text{ and }(1,1)$$
    $$\textbf{Step 2: Calculating}$$
                    $$\text{Slope }=\dfrac{y_2-y_1}{x_2-x_1}$$                
                    $$\text{Consider the points }(a,0)\text{ and }(0,b)$$                   
                    $$\implies \text{Slope}=\dfrac{0-b}{a-0}=\dfrac{-b}{a}$$
                    $$\text{Consider the points }(0,b)\text{ and }(1,1)$$
                    $$\implies \text{Slope}=\dfrac{b-1}{0-1}=-(b-1)$$
                    $$\implies \dfrac{-b}{a}=-(b-1)$$
                    $$\implies ab-a=b$$
                    $$\implies a+b=ab$$
                    $$\implies \dfrac1a+\dfrac1b=1$$
    $$\textbf{Hence, The expression }\mathbf{\dfrac1a+\dfrac1b=1 \text{ is true for the given conditions}} $$
  • Question 6
    1 / -0
    If planes $$x-cy-bz=0, cx-y+az=0$$ and $$bx+ay-z=0$$ pass through a straight line then $${ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }=$$
    Solution
    Since, the given planes are concurrent, hence:-

    $$\begin{vmatrix} 1 &-c & -b \\ c & -1 & a \\ b & a & -1 \end{vmatrix}=0$$

    $$\implies 1(1-a^2)+c(-c-ab)-b(ac+b)=0$$

    $$\implies1-a^2-c^2-abc-abc-b^2=0$$

    $$\implies a^2+b^2+c^2=1-2abc$$

    Hence, answer is option-(C).
  • Question 7
    1 / -0
    The value of the determinant $$\begin{vmatrix} b^2-ab & b-c & bc-ac \\ ab -a^2 & a-b & b^2-ab \\ bc-ac & c-a & ab -a^2 \end{vmatrix}$$ =
  • Question 8
    1 / -0
    If  $$B$$ is a square matrix of order 4 such that $$ |B|= 24$$ ,then the value of $$|adj B|$$ is equal to
    Solution

  • Question 9
    1 / -0
    If $$A$$ is $$3*3$$ show symmetric matrix then $$|A| = ?: - $$
    Solution

  • Question 10
    1 / -0
    $$\begin{vmatrix} a^2
    +2a & 2 a + 1 & 1 \\ 2a+1 & a+2 & 1 \\ 3 & 3 & 1
    \end{vmatrix} =$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now