Self Studies

Determinants Test - 66

Result Self Studies

Determinants Test - 66
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$1, \omega, \omega^{2}$$ are the roots of unity then $$ \triangle =\left| \begin{matrix} 1 & { \omega  }^{ n } & { \omega  }^{ 2n } \\ { \omega  }^{ n } & { \omega  }^{ 2n } & 1 \\ { \omega  }^{ 2n } & 1 & { \omega  }^{ n } \end{matrix} \right|$$ is equal to-
    Solution

  • Question 2
    1 / -0
    If a matrix $$\begin{bmatrix} { \left( x-a \right)  }^{ 2 } & { \left( x-b \right)  }^{ 2 } & { \left( x-c \right)  }^{ 2 } \\ { \left( y-a \right)  }^{ 2 } & { \left( y-b \right)  }^{ 2 } & { \left( y-c \right)  }^{ 2 } \\ { \left( z-a \right)  }^{ 2 } & { \left( z-b \right)  }^{ 2 } & { \left( z-c \right)  }^{ 2 } \end{bmatrix}$$ is a zero matrix, then $$a,b,c,x,y,z$$ are connected by:
    Solution

  • Question 3
    1 / -0
    The determinant $$\Delta=\left| \begin{matrix} { a }^{ 2 }\left( 1+x \right)  & ab & ac \\ ab & { b }^{ 2 }\left( 1+x \right)  & bc \\ ac & bc & { c }^{ 2 }\left( 1+x \right)  \end{matrix} \right| $$ is divisible by  
    Solution

  • Question 4
    1 / -0
    The determinant $$\left| \begin{matrix} a & b & a\alpha +b \\ b & c & b\alpha +c \\ a\alpha +b & b\alpha +c & 0 \end{matrix} \right|$$ is equal to zero, if
    Solution

  • Question 5
    1 / -0
    If the points $$A(x, 2), B(-3, -4)$$ and $$C(7, -5)$$ are collinear, then the value of $$x$$ is :
    Solution
    Given points are $$A(x,2)\: B(-3,-4) \: C(7, -5)$$
    $$(x_{1},y_{1})=(x,2),(x_{2},y_{2})= (-3,-4)(x_{3},y_{3})=(7,-5)$$
    $$x_{1}[y_{2}-y_{3}]+x_{2}[y_{3}-y_{1}]+x_{3}[y_{1}-y_{2}]=0$$
    $$x[(-4)-(-5)]+(-3)[(-5)-2]+7[2-(-4)]=0$$
    $$x(-4+5)-3(-5-2)+7(2+4)=0$$
    $$x(1)-3(-7)+7(6)=0$$
    $$x+21+42=0$$
    $$x+63=0$$
    $$x=-63$$
    $$\therefore $$ The value of x is $$-63$$.
  • Question 6
    1 / -0
    Which of the following is/are true ? 
     (i)  Adjoint of a symmetric matrix is symmetric 
    (ii)  Adjoint of a unit matrix is a unit matrix
    (iii) A(adj A)=(adj A) A= [A]f and 
    (iv) Adjoint of a diagonal matrix is a diagonal matrix  
    Solution

  • Question 7
    1 / -0
    If $$A=\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$$, then the value of $$|A||adj A|$$ is 
    Solution

  • Question 8
    1 / -0
    If $$A=\left[ \begin{matrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{matrix} \right]$$, then $$det(adj(adj A))$$
    Solution

  • Question 9
    1 / -0
    Let $$P\left( x \right) =\begin{vmatrix} x & -3+4i & 3-4i \\ x & -7i & 5+6i \\ x & 7-2i & -7-2i \end{vmatrix}$$
    The number of values of x for which $$P\left( x \right) =0$$ is 
  • Question 10
    1 / -0
    Let $$A$$ be a non-singular matrix of order $$n$$ nad $$\left|A\right|=K$$, then $$\left(adj A\right)^{-1}$$ is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now