Self Studies

Continuity and Differentiability Test - 10

Result Self Studies

Continuity and Differentiability Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Consider the function \(f(x)=\left\{\begin{array}{cc}x^{2} \ln |x| & x \neq 0 \\ 0 & x=0\end{array}\right.\). What is f’(0) equal to?

    Solution

    Given that,

    \(\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}\mathrm{x}^{2} \ln |\mathrm{x}| & \mathrm{x} \neq 0 \\ 0 & \mathrm{x}=0\end{array}\right.\)

    \(f'(x)=\left\{\begin{array}{c}2 x \ln |x|+x^{2} \times \frac{1}{x} &x \neq 0 \\ 0 & x=0\end{array} ~~~=\left\{\begin{array}{c}\frac{2 \ln x}{\frac{1}{x}}+x & x \neq 0 \\ 0 & x=0\end{array}\right.\right.\)

    \(\mathrm{f}^{\prime}(0)=\lim _{\mathrm{x} \rightarrow 0} \mathrm{f}^{\prime}(\mathrm{x})\)

    \(=\lim _{x \rightarrow 0} \frac{2 \operatorname{lnx}}{\frac{1}{x}}+\mathrm{x}\) 

    (It will become \(\frac{\infty}{\infty}\) form. So we will use here L'hospital rule)

    We know that:

    \(\lim _{x \rightarrow a} \frac{\mathrm{f}(\mathrm{x})}{g(x)}=\lim _{x \rightarrow a} \frac{\mathrm{f}^{\prime}(\mathrm{x})}{g^{\prime}(x)}\)

    \(\mathrm{f}^{\prime}(0)=\lim _{\mathrm{x} \rightarrow 0} 2 \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}+\mathrm{x}\)

    \(\mathrm{f}^{\prime}(0)=\lim _{\mathrm{x} \rightarrow 0}-2 \mathrm{x}+\mathrm{x}\)

    \(\mathrm{f'}(0)=0\)

    Hence, the correct option is (A).

  • Question 2
    1 / -0

    If \(y+\sin ^{-1}\left(1-x^{2}\right)=e^{x}\), then \(\frac{d y}{d x}=?\) 

    Solution

    Given:

    \(y+\sin ^{-1}\left(1-x^{2}\right)=e^{x}\)

    \(y=e^{x}-\sin ^{-1}\left(1-x^{2}\right)\)

    Differentiating above with respect to x, we get:

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=e^{x}-\frac{1}{\sqrt{1-\left(1-\mathrm{x}^{2}\right)^{2}}}(-2 \mathrm{x})\)

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=e^{\mathrm{x}}+\frac{2 \mathrm{x}}{\sqrt{1-\left(1-2 \mathrm{x}^{2}+\mathrm{x}^{4}\right)}}\)

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=e^{\mathrm{x}}+\frac{2 \mathrm{x}}{\sqrt{2 x^{2}-\mathrm{x}^{4}}}\)

    \(\frac{\mathrm{dy}}{\mathrm{d} x}=\mathrm{e}^{\mathrm{x}}+\frac{2}{\sqrt{2-\mathrm{x}^{2}}}\)

    Hence, the correct option is (B).

  • Question 3
    1 / -0

    If \(y=e^{x+e^{x+e^{x+\cdots \infty}}}\), then \(\frac{d y}{d x}\) is:

    Solution

    It is given that: 

    \(y=e^{x+e^{x+e^{x+\cdots \infty}}}\)

    \(\therefore y=e^{x+\left(e^{x+e^{x+} \cdots \infty}\right)}=e^{x+y}\)

    Differentiating both sides with respect to x and using the chain rule, we get:

    \(\frac{d y}{d x}=\frac{d}{d x} e^{x+y}\)

    \(\Rightarrow \frac{d y}{d x}=e^{x+y} \frac{d}{d x}(x+y)\)

    \(\Rightarrow \frac{d y}{d x}=y\left(1+\frac{d y}{d x}\right)\)

    \(\Rightarrow \frac{d y}{d x}=y+y \frac{d y}{d x}\)

    \(\Rightarrow(1-y) \frac{d y}{d x}=y\)

    \(\Rightarrow \frac{d y}{d x}=\frac{y}{1-y}\)

    Hence, the correct option is (C).

  • Question 4
    1 / -0

    If \(f(x)=x^{3}+3 x^{2}+3 x-7\), then find the value of \(\frac{d f(x)}{d x}\) at \(x=2\).

    Solution

    Given:

    \(f(x)=x^{3}+3 x^{2}+3 x-7\)

    We know that:

    \(\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\)

    Derivative of a constant, i.e.,

    \(\frac{\mathrm{d}(\text { constant })}{\mathrm{dx}}=0\)

    Therefore, 

    \(\frac{d f(x)}{d x}=3 x^{2}+6 x+3\)

    Putting \(x=2\) in above, we get:

    \(\frac{\mathrm{d} \mathrm{f}(\mathrm{x})}{\mathrm{dx}}=3(2)^{2}+6(2)+3\)

    \(=3(4)+12+3\)

    \(=12+12+3\)

    \(\frac{\mathrm{d} \mathrm{f}(\mathrm{x})}{\mathrm{dx}}=27\)

    The value of \(\frac{\mathrm{d} \mathrm{f}(x)}{\mathrm{dx}}\) at \(\mathrm{x}=2\) is 27.

    Hence, the correct option is (C).

  • Question 5
    1 / -0

    If \(y=3 t^{2}-4 t-3\) and \(x=8 t+5\), find \(\frac{d y}{d x}\) at \(t=6\).

    Solution

    Given:

    \(y=3 t^{2}-4 t-3\)

    Differentiating above with respect to t, we get:

    \(\frac{\mathrm{dy}}{\mathrm{dt}}=6 \mathrm{t}-4\)

    Similarly,

    \(x=8 t+5\)

    Differentiating above with respect to t, we get:

    \(\frac{\mathrm{dx}}{\mathrm{dt}}=8\)

    \(\frac{\mathrm{dx}}{\mathrm{dt}}=8\)

    As we know:

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{\mathrm{dy}}{\mathrm{dt}}}{\frac{\mathrm{dx}}{\mathrm{dt}}}\)

    Then, 

    \(\frac{d y}{d x}=\frac{6 t-4}{8}\)

    At t = 6, we get:

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{(6 \times 6)-4}{8}\)

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{32}{8}\)

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=4\)

    Hence, the correct option is (A).

  • Question 6
    1 / -0

    If \(y=\frac{12 \tan x-4 \tan ^{3} x}{9-27 \tan ^{2} x}\), then find \(\frac{d^{2} y}{d x^{2}}\).

    Solution

    Given: 

    \(y=\frac{12 \tan x-4 \tan ^{3} x}{9-27 \tan ^{2} x}\)  

    \(\Rightarrow y=\frac{4\left(3 \tan x-\tan ^{3} x\right)}{9\left(1-3 \tan ^{2} x\right)}\)

    We know that, 

    \(\tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}\)

    \(\Rightarrow y=\frac{4}{9} \tan 3 x\)

    Differentiating both sides with respect to \(x\), we get:

    \(\Rightarrow \frac{d y}{d x}=\frac{4}{9} \sec ^{2} 3 x \times 3\)

    \(\Rightarrow \frac{d y}{d x}=\frac{4}{3} \sec ^{2} 3 x\)

    Again, differentiating with respect to \(x\), we get:

    \(\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{4}{3} \times 2 \times \sec 3 x \times \tan 3 x \times \sec 3 x \times 3\)

    \(\Rightarrow \frac{d^{2} y}{d x^{2}}=8 \sec ^{2} 3 x \tan 3 x\)

    Hence, the correct option is (A).

  • Question 7
    1 / -0

    Find the value of \(\lim _{x \rightarrow 0} \frac{\sqrt[p]{1+x}-1}{x}\), where \(p\) is a positive integer.

    Solution

    Given here: 

    \(\lim _{x \rightarrow 0} \frac{\sqrt[p]{1+x}-1}{x}\)

    Apply L-Hospital rule,

    \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}\)

    Therefore,

    \(\lim _{x \rightarrow 0} \frac{\sqrt[p]{1+x}-1}{x}\)

    \(=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left((1+x)^{\frac{1}{p}}-1\right)}{\left(\frac{d x}{d x}\right)}\)

    \(=\lim _{x \rightarrow 0} \frac{1}{p} \times(1+x)^{\frac{1}{p}-1}\)

    \(=\frac{1}{p}(1+0)^{\frac{1}{p}-1}\)

    \(=\frac{1}{p}\)

    Hence, the correct option is (B).

  • Question 8
    1 / -0

    What is the value of \(\frac{d y}{d x}\), if \(y^{2}+x^{2}+3 x+5=0\) at \((0,-3)?\)

    Solution

    Given that: 

    \(y^{2}+x^{2}+3 x+5=0\)

    We know that:

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{du}} \times \frac{\mathrm{du}}{\mathrm{dx}}\)

    Differentiating with respect to \(x\), we get:

    \(2 y \frac{d y}{d x}+2 x+3(1)+0=0\)

    \(2 y \frac{d y}{d x}+2 x+3=0\)

    \(2 y \frac{d y}{d x}=-(2 x+3)\)

    \(\frac{d y}{d x}=-\frac{2 x+3}{2 y}\)

    Now at (0, -3)

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{2(0)+3}{2(-3)}\)

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{3}{(-6)}\)

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\)

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=0.5\)

    Hence, the correct option is (D).

  • Question 9
    1 / -0

    Let \(f(x)=\log x^{3}+2 x^{2}-3 x+100\), then find \(f'(3)\).

    Solution

    We know that:

    If \(f(x)=x^{n}\), then \(f'(x)=n x^{n-1}\) 

    \(f(x)=\log x\), then \(f'(x)=\frac{1}{x}\) 

    \(f(x)=\) Constant, then \(f'(x)=0\) 

    \(\log m^{n}=n \log m\)

    Given here:

    \(\mathrm{f}(\mathrm{x})=\log \mathrm{x}^{3}+2 \mathrm{x}^{2}-3 \mathrm{x}\)

    \(\Rightarrow \mathrm{f}(\mathrm{x})=3 \log \mathrm{x}+2 \mathrm{x}^{2}-3 \mathrm{x}\)

    \(\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3 \frac{\mathrm{d}}{\mathrm{dx}} \log \mathrm{x}+\frac{\mathrm{d}}{\mathrm{dx}} 2 \mathrm{x}^{2}-\frac{\mathrm{d}}{\mathrm{dx}} 3 \mathrm{x}\)

    \(\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{3}{x}+4 \mathrm{x}-3\)

    Putting x = 3 in above, we get:

    \(\Rightarrow \mathrm{f}^{\prime}(3)=\frac{3}{3}+4(3)-3\)

    \(\Rightarrow \mathrm{f}^{\prime}(3)=10\)

    Hence, the correct option is (D).

  • Question 10
    1 / -0

    What is the value of \(\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{3 x}\)?

    Solution

    Given here:

    \(\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{3 x}\)

    On substituting the limit value in the given function, we get:

    \(\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{3 x}\)

    \(=\frac{\sqrt{(4+0)}-2}{3(0)}\)

    \(=\frac{0}{0}\)

    Conjugate of \(\sqrt{4+x}-2\) is \(\sqrt{4+x}+2\)

    Multiply and divide by \(\sqrt{4+x}+2\) in the given expression, we get:

    \(\therefore \lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{3 x} \times \frac{\sqrt{4+x}+2}{\sqrt{4+x}+2}\)

    \(=\lim _{x \rightarrow 0} \frac{4+x-4}{3 x \sqrt{4+x}+2} \quad\left(\because(a+b)(a-b)=\left(a^{2}-b^{2}\right)\right)\)

    \(= \lim _{x \rightarrow 0} \frac{x}{3 x(\sqrt{4+x}+2)}\)

    \(=\lim _{x \rightarrow 0} \frac{1}{3(\sqrt{4+x}+2)}\)

    Now, putting the value of x in the limit, we get:

    \(=\frac{1}{3(2+2)}\)

    \(=\frac{1}{12}\)

    Hence, the correct option is (B).

  • Question 11
    1 / -0

    If \(f(x)=\left\{\begin{array}{ll}\frac{\sin 3 x}{e^{2 x}-1}, & x \neq 0 \\ k-2, & x=0\end{array}\right.\) is continuous at \(x=0\), then \(k=\)?

    Solution

    Since \(\mathrm{f}(\mathrm{x})\) is given to be continuous at \(\mathrm{x}=0\), 

    \(\lim _{\mathrm{x} \rightarrow 0} \mathrm{f}(\mathrm{x})=\mathrm{f}(0)\)

    Also, \(\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)\) because \(f(x)\) is same for \(x>0\) and \(x<0\).

    \(\therefore \lim _{x \rightarrow 0} f(x)=f(0)\)

    We know that:

    \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\)

    \(\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\)

    Therefore,

    \(\Rightarrow \lim _{x \rightarrow 0} \frac{\sin 3 x}{e^{2 x}-1}=k-2\)

    Multiplying and dividing by 3x in numerator and by 2x in denominator, we get:

    \(\Rightarrow \lim _{x \rightarrow 0} \frac{\frac{\sin 3 x}{3 x} \times 3 x}{\frac{e^{2 x}-1}{2 x} \times 2 x}=k-2\)

    \(\Rightarrow \frac{3}{2}=k-2\)

    \(\Rightarrow k=\frac{7}{2}\)

    Hence, the correct option is (D).

  • Question 12
    1 / -0

    If \(\lim _{x \rightarrow 0} \frac{\log (1+\sin x)}{x}=k\), the value of \(k\) is:

    Solution

    Given that: 

    \(\lim _{\mathrm{x} \rightarrow 0} \frac{\log (1+\sin x)}{\mathrm{x}}=\mathrm{k}\)

    Put x = 0, to check form

    \(\lim _{x \rightarrow 0} \frac{\log (1+\sin x)}{x}\)

    \(=\frac{\log (1+0)}{0}\)

    \(=\frac{0}{0}\)

    Applying L’ hospital’s rule as,

    \(\lim _{x \rightarrow a} \frac{\mathrm{f}(x)}{g(x)}=\lim _{x \rightarrow a} \frac{\mathrm{f}^{\prime}(x)}{g^{\prime}(x)}\)

    \(\lim _{x \rightarrow 0} \frac{\log (1+\sin x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\log (1+\sin x))}{\frac{d}{d x}(x)}\)

    \(=\lim _{\mathbf{x} \rightarrow 0} \frac{\frac{1}{1+\sin x} \times \cos x}{1}\)

    \(=\frac{1}{1+\sin 0} \times \cos 0\)

    \(=1\)

    \(\therefore \mathrm{k}=1\)

    Hence, the correct option is (D).

  • Question 13
    1 / -0

    What is the value of \(\lim _{x \rightarrow 1} \frac{4 x^{2}-5 x+1}{x^{2}-1}\)?

    Solution

    We know that:

    If \(f(x)=x^{n}\), then: 

    \(f^{\prime}(x)=n x^{n-1}\)

    Given here:

    \(\lim _{x \rightarrow 1} \frac{4 x^{2}-5 x+1}{x^{2}-1}\)

     We can see here:

    \(\lim _{x \rightarrow 1} \frac{4 x^{2}-5 x+1}{x^{2}-1}=\frac{0}{0}\), is an indeterminate form.

    Let us use the L'Hospital's rule:

    \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}\)

    Then:

    \(\lim _{x \rightarrow 1} \frac{4 x^{2}-5 x+1}{x^{2}-1}\)

    \(=\lim _{x \rightarrow 1} \frac{\frac{d}{d x}\left(4 x^{2}-5 x+1\right)}{\frac{d}{d x}\left(x^{2}-1\right)}\)

    \(=\lim _{x \rightarrow 1} \frac{8 x-5}{2 x}\)

    \(=\frac{3}{2}\)

    Hence, the correct option is (C).

  • Question 14
    1 / -0

    If \(\sqrt{y}=\sin x+\cos x\), then \(\frac{d y}{d x}\) is:

    Solution

    Given: 

    \(\sqrt{y}=\sin x+\cos x\)  

    Squaring both sides, we get:

    \(\Rightarrow y=(\sin x+\cos x)^{2}\)

    \(\Rightarrow y=\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x\)

    \(\Rightarrow y=1+\sin 2 x \quad(\because 2 \sin x \cos x=\sin 2 x)\)

    Differentiating above with respect to x, we get:

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=0+2 \times \cos 2 \mathrm{x}\)

    \(=2 \cos 2 \mathrm{x}\)

    Hence, the correct option is (B).

  • Question 15
    1 / -0

    Let \(f(x)=2 x^{3}+\frac{1}{x}\), then \(f'(1)\) is:

    Solution

    Given:

    \(\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}+\frac{1}{\mathrm{x}}\)

    We know that:

    If \(f(x)=x^{n}\), then: 

    \(f'(x)=n x^{n-1}\)

    Differentiating with respect to x, we get:

    \(f'(x)=6 x^{2}-\frac{1}{x^{2}}\)

    Putting \(x=1\) in above, we get:

    \(f'(1)=6 \times 1^{2}-\frac{1}{1^{2}}\)

    \(f'(1)=6-1=5\)

    \(\therefore\) The value of \(f^{\prime}(1)\) is 5.

    Hence, the correct option is (A).

  • Question 16
    1 / -0

    What is \(\lim _{x \rightarrow 0} \frac{\sin x \log (1-x)}{x^{2}}\) equal to?

    Solution

    Given:

    \(\lim _{x \rightarrow 0} \frac{\sin x \log (1-x)}{x^{2}}\)

    As we know,

    \(\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)\)

    \(\therefore \lim _{x \rightarrow 0} \frac{\sin x \log (1-x)}{x^{2}}\)

    \(=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \lim _{x \rightarrow 0} \frac{\log (1-x)}{x}\)

    \(=1 \times \lim _{x \rightarrow 0} \frac{\log (1+(-x))}{x} \quad\) \( (\because\lim _{x \rightarrow 0} \frac{\sin x}{x}=1)\)

    \(=\lim _{x \rightarrow 0} \frac{\log (1+(-x))}{-(-x)}\)

    \(=-1 \times \lim _{x \rightarrow 0} \frac{\log (1+(-x))}{(-x)}\) 

    \(=-1 \times 1 \quad\) \((\because\lim _{x \rightarrow 0} \frac{\log x}{x}=1)\)  

    \(=-1\)

    Hence, the correct option is (A).

  • Question 17
    1 / -0

    Find the derivative of \(\frac{1}{3 x^{2}}\) with respect to \(x\).

    Solution

    Let, \(y=\frac{1}{3 x^{2}}\) ....(1)

    We know that:

    \(\frac{d x^{n}}{dx}=nx^{n-1}\)

    Differentiating (1) with respect of x, we get:

    \(\frac{dy}{dx} =\frac{d}{dx}\left(\frac{1}{3 x^{2}}\right)\)

    \(=\frac{1}{3} \frac{d\left(x^{-2}\right)}{dx}\)

    \(=\frac{1}{3} \times-2 \times x^{-2-1}\)

    \(=\frac{-2}{3 x^{3}}\)

    Hence, the correct option is (C).

  • Question 18
    1 / -0

    What is \(\lim _{x \rightarrow 0} \frac{3^{x}+3^{-x}-2}{x}\) equal to?

    Solution

    Given:

    \(\lim _{x \rightarrow 0} \frac{3^{x}+3^{-x}-2}{x}\)

    We know that:

    \(\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)\)

    \(\lim _{x \rightarrow 0} \frac{\left(a^{x}-1\right)}{x}=\log a\)

    \(\log m^{n}=n \log m\)

    Therefore,

    \(\lim _{x \rightarrow 0} \frac{3^{x}+3^{-x}-2}{x}\)

    \(=\lim _{x \rightarrow 0} \frac{3^{x}-1+3^{-x}-1}{x}\)

    \(=\lim _{x \rightarrow 0} \frac{3^{x}-1}{x}+\lim _{x \rightarrow 0} \frac{3^{-x}-1}{x}\)

    \(=\lim _{x \rightarrow 0} \frac{3^{x}-1}{x}+\lim _{x \rightarrow 0} \frac{\left(3^{-1}\right)^{x}-1}{x}\)

    \(=\log 3+\log \left(3^{-1}\right)\)

    \(=\log 3-\log 3\)

    \(=0\)

    Hence, the correct option is (A).

  • Question 19
    1 / -0

    If \(f(x)=\frac{\sin \left(e^{x-2}-1\right)}{\log (x-1)}, x \neq 2\) and \(f(x)=k\). Then, the value of k for which f will be continuous at x = 2 is:

    Solution

    Given:

    \(\lim _{x \rightarrow 2} \frac{\sin \left(e^{x-2}-1\right)}{\log (x-1)}\)  .....(1)

    We know that:

    \(\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=l=\lim _{x \rightarrow a} f(x)\)

    On substituting, \(\mathrm{h}=\mathrm{x}-2\) in (1), we get:

    \(=\lim _{h \rightarrow 0} \frac{\sin \left(e^{h}-1\right)}{\log (1+h)}\)

    This can be rearranged as:

    \(=\lim _{h \rightarrow 0} \frac{\sin \left(e^{h}-1\right)}{e^{h}-1} \cdot \frac{e^{h}-1}{h} \cdot \frac{h}{\log (1+h)}\)

    \(=1 \cdot 1 \cdot 1\)

    \(=1\) 

    And, \(f(2)=k\)

    ∴ For the function to be continuous the value of the function f(x) at x = 2 must equal the limiting value of 1, i.e., k = 1

    Hence, the correct option is (D).

  • Question 20
    1 / -0

    The derivative of \(\csc ^{-1}\left(\frac{1}{2 x^{2}-1}\right)\) with respect to \(\sqrt{1-x^{2}}\) is:

    Solution

    Let, \(v=\csc ^{-1}\left(\frac{1}{2 x^{2}-1}\right)\) and \(u=\sqrt{1-x^{2}}\)

    Substituting \(x=\cos \theta\), 

    \(\Rightarrow \theta=\cos ^{-1} x\), 

    We get:

    \(v=\csc ^{-1}\left(\frac{1}{2 \cos ^{2} \theta-1}\right)\)

    \(=\csc ^{-1}\left(\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta}\right)\)

    \(=\csc ^{-1}\left(\frac{1}{\cos 2 \theta}\right)\)

    \(=\csc ^{-1}(\sec 2 \theta)\)

    \(=\csc ^{-1}\left(\csc \left(90^{\circ}-2 \theta\right)\right)\)

    \(=90^{\circ}-\) \(2 \theta\).

    And, \(u=\sqrt{1-x^{2}}\)

    \(=\sqrt{1-\cos ^{2} \theta}\)

    \(=\sqrt{\sin ^{2} \theta}\)

    \(=\sin \theta\)

    Now, 

    \(\frac{d v}{d \theta}=-2\) 

    And, 

    \(\frac{d u}{d \theta}=\cos \theta\)

    \(\therefore \frac{\mathrm{dv}}{\mathrm{du}} =\frac{\mathrm{dv}}{\mathrm{d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{d} u}\)

    \(=\frac{-2}{\cos \theta}\)

    \(=\frac{-2}{x}\)

    Hence, the correct option is (B).

  • Question 21
    1 / -0

    Find \(\frac{\mathrm{dy}}{\mathrm{dx}}\), if \(\mathrm{y}=\tan ^{-1}\left[\frac{8 \mathrm{x}}{1-15 \mathrm{x}^{2}}\right]\).

    Solution

    Given that:

    \(\mathrm{y}=\tan ^{-1}\left[\frac{8 \mathrm{x}}{1-15 \mathrm{x}^{2}}\right]\)

    As we know that, 

    \(\tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{y}=\tan ^{-1}\left[\frac{x+\mathrm{y}}{1-\mathrm{xy}}\right]\)

    So, 

    \(y=\tan ^{-1}\left[\frac{5 x+3 x}{1-5 x \cdot 3 x}\right]\)

    \(=\tan ^{-1} 5 x+\tan ^{-1} x\)

    Also, we know:

    \(\frac{\mathrm{d}\left(\tan ^{-1} \mathrm{x}\right)}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}}\)

    Differentiating y with respect to x, we get:

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}\left(\tan ^{-1} 5 \mathrm{x}\right)}{\mathrm{dx}}+\frac{\mathrm{d}\left(\tan ^{-1} 3 \mathrm{x}\right)}{\mathrm{dx}}\)

    \(=\frac{5}{1+(5 x)^{2}}+\frac{3}{1+(3 \mathrm{x})^{2}}\)

    \(=\frac{5}{1+25 x^{2}}+\frac{3}{1+9 x^{2}}\)

    Hence, the correct option is (B).

  • Question 22
    1 / -0

    Evaluate \(\frac{\mathrm{d}}{\mathrm{dx}}\left(\cot ^{-1} \frac{1}{\mathrm{x}}\right)\).

    Solution

    Given:

    \(\frac{\mathrm{d}}{\mathrm{dx}}\left(\cot ^{-1} \frac{1}{x}\right)\)

    \(=\frac{\mathrm{d} \cot ^{-1} \frac{1}{\mathrm{x}}}{\mathrm{d}\left(\frac{1}{x}\right)} \times \frac{\mathrm{d}\left(\frac{1}{x}\right)}{\mathrm{dx}}\)

    We know that:

    \(\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}\)

    \(\frac{d}{d x}\left(\cot ^{-1} x\right)=\frac{-1}{1+x^{2}}\)

    \(\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}\)

    \(=\frac{-1}{1+\left(\frac{1}{x}\right)^{2}} \times \frac{d}{d x}\left(\frac{1}{x}\right)\)

    Therefore, 

    \(\frac{\mathrm{d} \cot ^{-1} \frac{1}{\mathrm{x}}}{\mathrm{d}\left(\frac{1}{x}\right)} \times \frac{\mathrm{d}\left(\frac{1}{x}\right)}{\mathrm{dx}}\)

    \(=\frac{-1}{1+\left(\frac{1}{x}\right)^{2}} \times\left(-\frac{1}{x^{2}}\right)\)

    \(=\frac{1}{\frac{x^{2}+1}{x^{2}}} \times\left(\frac{1}{x^{2}}\right)\)

    \(=\frac{x^{2}}{1+x^{2}} \times \frac{1}{x^{2}}\)

    \(=\frac{1}{1+x^{2}}\)

    Hence, the correct option is (C).

  • Question 23
    1 / -0

    If \(f(x)=4 x^{3}-3 x^{2}+5\), then find \(f''(x)\).

    Solution

    Given:

    \(f(x)=4 x^{3}-3 x^{2}+5\)

    We know that:

    If \(f(x)=x^{n}\), then: 

    \(f'(x)=n x^{-1}\)

    Differentiating above with respect to x, we get:

    \(f'(x)=4 \times 3 \times x^{2}-3 \times 2 \times x + 0\)

    \(f'(x)=12 x^{2}-6 x\)

    Again, differentiating above with respect to x, we get:

    \(\Rightarrow f''(x)=24 x-6\)

    Hence, the correct option is (B).

  • Question 24
    1 / -0

    Find \(\frac{\mathrm{d}^{2} (\cot ^{-1} x)}{\mathrm{dx}^{2}}\).

    Solution

    Given:

    \(\frac{\mathrm{d}^{2} \cot ^{-1} \mathrm{x}}{\mathrm{d} x^{2}}\)

    \(=\frac{\mathrm{d}}{\mathrm{dx}} \times \frac{\mathrm{d} (\cot ^{-1} \mathrm{x})}{\mathrm{dx}}\)

    \(=\frac{\mathrm{d}\left(\frac{-1}{1+\mathrm{x}^{2}}\right)}{\mathrm{d} x}\)

    \(=-\frac{\mathrm{d}\left(\frac{1}{1+x^{2}}\right)}{\mathrm{dx}}\)

    On applying chain rule of derivative, we get:

    \(=-\frac{\mathrm{d}\left(\frac{1}{1+x^{2}}\right)}{\mathrm{d}\left(1+\mathrm{x}^{2}\right)} \times \frac{\mathrm{d}\left(1+\mathrm{x}^{2}\right)}{\mathrm{dx}}\)

    \(=\frac{1}{\left(1+\mathrm{x}^{2}\right)^{2}} \times(0+2 \mathrm{x}) \quad\left(\because \frac{\mathrm{d}\left(\frac{1}{\mathrm{x}}\right)}{\mathrm{dx}}=\frac{-1}{\mathrm{x}^{2}}\right)\)

    \(=\frac{2 \mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{2}}\)

    Hence, the correct option is (D).

  • Question 25
    1 / -0

    Let \(\mathrm{f}(\mathrm{x})=\mathrm{x}-\frac{1}{\mathrm{x}}\), then \(\mathrm{f}'(-1)\) is:

    Solution

    Given here, 

    \(f(x)=x-\frac{1}{x}\) ....(1)

    We know that:

    If \(f(x)=x^{n}\), then: 

    \(f^{\prime}(x)=n x^{n-1}\)

    Differentiating (1) with respect to x, we get:

    \(\Rightarrow f^{\prime}(x)=1-\left(\frac{-1}{x^{2}}\right)\)

    \(f^{\prime}(x)=1+\frac{1}{x^{2}}\)

    Putting x = -1 in above, we get:

    \(f'(-1)=1+\frac{1}{(-1)^{2}}\)

    \(=1+1\)

    \(=2\)

    Hence, the correct option is (B).

  • Question 26
    1 / -0

    Let \(f(2)=2\) and \(f(x)=2\). Then, \(\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}\) is given by:

    Solution

    Given here: 

    \(f(2)=2\) and \(f(x)=2\).

    Let us check the form by putting \(x = 2\), we get:

    \(\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}\)

    \(=\frac{2(2)-2(2)}{2-2}\)

    \(=\frac{0}{0}\)

    Apply L’ hospital’s rule,

    \(\lim _{x \rightarrow a} \frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(x)}=\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{f}(\mathrm{x}))}{\frac{d}{d x}(\mathrm{~g}(\mathrm{x}))}=\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{\mathrm{f}^{\prime}(x)}{\mathrm{g}^{\prime}(x)}\)

    \(\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}\)

    Differentiating the numerator and the denominator in above, we get:

    \(=\lim _{x \rightarrow 2} \frac{\frac{d}{d x}(x f(2)-2 f(x))}{\frac{d}{d x}(x-2)}\)

    \(=\lim _{x \rightarrow 2} \frac{f(2)-2 f^{\prime}(x)}{1}\)

    Now, take limit at x = 2

    \(\lim _{x \rightarrow 2}=f(2)-2 f^{\prime}(2)\)

    \(=2-2(2)\)

    \(=-2\)

    Hence, the correct option is (C).

  • Question 27
    1 / -0

    If \(y=x^{x}\), what is \(\frac{d y}{d x}\) at \(x=1\) equal to?

    Solution

    Given:

    \(y=x^{x}\)

    Taking log both sides, we get,

    \(\Rightarrow \log y=\log x^{x} \)

    \(\Rightarrow \log y=x \log x\quad\left(\because \log m^{n}=n \log m\right)\)

    Differentiating above with respect to x, we get:

    \(\Rightarrow \frac{1}{y} \times \frac{d y}{d x}=x \times \frac{\log x}{d x}+\log x \times \frac{d x}{d x}\)

    \(\Rightarrow \frac{1}{y} \times \frac{d y}{d x}=x \times \frac{1}{x}+\log x \times 1\)

    \(\Rightarrow \frac{d y}{d x}=y \times[1+\log x]\)

    \(\Rightarrow \frac{d y}{d x}=x^{x} \times[1+\log x]\)

    Putting x = 1, we get:

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1^{1} \times[1+\log 1]\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1 \times[1+0] \quad(\because \log 1=0)\)

    \(\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=1\)

    Hence, the correct option is (B).

  • Question 28
    1 / -0

    Let \(\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}+\frac{1}{\mathrm{x}}\), then \(\mathrm{f'}(1)\) is:

    Solution

    Given:

    \(f(x)=2 x^{2}+\frac{1}{x}\) .... (1)

    We know that:

    If \(f(x)=x^{n}\), then: 

    \(f'(x)=n x^{n-1}\)

    Differentiating (1) with respect to x, we get:

    \(\Rightarrow f^{\prime}(x)=4 x-\frac{1}{x^{2}}\)

    Putting x = 1 in above, we get:

    \(f'(1)=4 \times 1-\frac{1}{1^{2}}\)

    \(f'(1)=4-1=3\)

    \(\therefore\) The value of \(f^{\prime}(1)\) is 3.

    Hence, the correct option is (C).

  • Question 29
    1 / -0

    If \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\), then \(\frac{d y}{d x}=?\)

    Solution

    Given that: 

    \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\)

    Differentiating with respect to \(x\), we get: 

    \(\Rightarrow \frac{2 {x}}{{a}^{2}}+\frac{2 {y}}{{b}^{2}} \frac{{dy}}{{dx}}=0\)

    \(\Rightarrow \frac{2 {y}}{{b}^{2}} \frac{{dy}}{{dx}}=-\frac{2 {x}}{a^{2}}\)

    \(\therefore \frac{{dy}}{{dx}}=-\frac{{b}^{2} {x}}{{a}^{2} {y}}\)

    Hence, the correct option is (B).

  • Question 30
    1 / -0

    If \(x^{e}=e^{x^{2}+y^{2}}\), then find \(\frac{d y}{d x}\).

    Solution

    Given:

    \(x^{e}=e^{x^{2}+y^{2}}\)

    Taking log on both sides, we get:

    \(\Rightarrow \log x^{e}=\log e^{x^{2}+y^{2}}\)

    \(\Rightarrow e \log x=\left(x^{2}+y^{2}\right) \log e\)

    \(\left[\because \log m^{n}=n \log m\right]\)

    \(\Rightarrow e \log x=x^{2}+y^{2} \quad [\because \log e=1]\)

    Differentiating with respect to x, we get:

    \(\Rightarrow \mathrm{e}\left(\frac{1}{\mathrm{x}}\right)=2 \mathrm{x}+2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}\)

    \(\Rightarrow \frac{\mathrm{e}}{\mathrm{x}}-2 \mathrm{x}=2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}\)

    \(\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{e}-2 \mathrm{x}^{2}}{2 \mathrm{xy}}\)

    Hence, the correct option is (B).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now