Let, \(v=\csc ^{-1}\left(\frac{1}{2 x^{2}-1}\right)\) and \(u=\sqrt{1-x^{2}}\)
Substituting \(x=\cos \theta\),
\(\Rightarrow \theta=\cos ^{-1} x\),
We get:
\(v=\csc ^{-1}\left(\frac{1}{2 \cos ^{2} \theta-1}\right)\)
\(=\csc ^{-1}\left(\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta}\right)\)
\(=\csc ^{-1}\left(\frac{1}{\cos 2 \theta}\right)\)
\(=\csc ^{-1}(\sec 2 \theta)\)
\(=\csc ^{-1}\left(\csc \left(90^{\circ}-2 \theta\right)\right)\)
\(=90^{\circ}-\) \(2 \theta\).
And, \(u=\sqrt{1-x^{2}}\)
\(=\sqrt{1-\cos ^{2} \theta}\)
\(=\sqrt{\sin ^{2} \theta}\)
\(=\sin \theta\)
Now,
\(\frac{d v}{d \theta}=-2\)
And,
\(\frac{d u}{d \theta}=\cos \theta\)
\(\therefore \frac{\mathrm{dv}}{\mathrm{du}} =\frac{\mathrm{dv}}{\mathrm{d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{d} u}\)
\(=\frac{-2}{\cos \theta}\)
\(=\frac{-2}{x}\)
Hence, the correct option is (B).