Self Studies

Continuity and Differentiability Test - 12

Result Self Studies

Continuity and Differentiability Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$xlog_e(log_ex)-x^2+y^2=4(y>0)$$, then dy/dx at $$x=e$$ is equal to:
    Solution
    When $$x=e$$,then $$0-e^2+y^2=4,y=\sqrt{e^2+4}$$
    Differentiating with respect to x, We get:
    $$x.\dfrac{1}{\ell n x}.\dfrac{1}{x}+\ell n(\ell n x)-2x+2y.\dfrac{dy}{dx}=0$$ at $$x=e$$ we get
    $$1-2e+2y\dfrac{dy}{dx}=0\Rightarrow\dfrac{dy}{dx}=\dfrac{2e-1}{2y}$$
    $$\Rightarrow\dfrac{dy}{dx}=\dfrac{2e-1}{2\sqrt{4+e^2}}$$ as $$y(e)=\sqrt{4+e^2}$$
  • Question 2
    1 / -0
    If $$x=\cos^3\theta $$ and $$y=\sin^3\theta$$, then $$1+\left(\displaystyle\frac{dy}{dx}\right)^2$$ is equal to:
    Solution
    $$\Rightarrow \dfrac{dx}{d\theta}=3\cos^2\theta(-\sin\theta)=-3\cos^2\theta\sin\theta$$ ------(1)
    and 
    $$\Rightarrow \dfrac{dy}{d\theta}=3\sin^2\theta\cos\theta$$ -----(2)
    Hence, $$1+\left( \dfrac{dy}{dx}\right)^2=1+\left( \dfrac{dy/d\theta}{dx/d\theta}\right)^2=1+\dfrac{\sin^2\theta}{\cos^2\theta}=\sec^2\theta$$
  • Question 3
    1 / -0
    For the curve $$x = t^2 - 1, y = t^2 - t$$, tangent is parallel to $$x$$ - axis where,
    Solution
    $$x = t^2 - 1, y = t^2 - t$$
    If tangent is parallel to $$x$$ axis, $$\cfrac{dy}{dx} = 0$$
    $$\Rightarrow \cfrac{dy}{dt} \times \cfrac{dt}{dx} = 0$$
    i.e. $$(2t - 1) \times \cfrac{1}{2t} = 0$$
    i.e. $$t = \cfrac{1}{2}$$
  • Question 4
    1 / -0
    $$\displaystyle \frac{d}{dx}(\tan ^{-1}x)$$
    Solution
    Let  $$\displaystyle y=\tan ^{-1}x\therefore x=\tan y$$
    $$\displaystyle y+\delta y=\tan ^{-1}\left ( x+\delta x \right )$$
    $$\displaystyle \therefore x+\delta x=\tan\left ( y+\delta y \right )$$
    $$\therefore \displaystyle \frac{dy}{dx}=\lim_{\delta x\rightarrow 0}\frac{\delta y}{\delta x}$$
    $$\displaystyle =\lim_{\delta x\rightarrow 0}\frac{\delta y}{\tan\left ( y+\delta y \right )-\tan y}= \frac{1}{\sec^{2}y}$$
    $$\displaystyle =\frac{1}{1+\tan ^{2}y}= \frac{1}{1+x^{2}}.$$
  • Question 5
    1 / -0
    $$\displaystyle \frac{d(sin^{-1}x)}{dx}$$
    Solution
    $$\displaystyle  y= \sin ^{-1}x,$$
    $$\displaystyle y+\delta y= \sin ^{-1}\left ( x+\delta x \right )$$
    $$\displaystyle \therefore \left ( x+\delta x \right) = \sin \left ( y+\delta y \right )$$
    $$\displaystyle \frac{dy}{dx}= \lim_{x\rightarrow 0}\frac{1}{\delta x}(\sin ^{-1}\left ( x+\delta x \right )-\sin ^{-1}x)$$
    $$\displaystyle = \lim_{x\rightarrow 0}\frac{\delta y}{\sin \left ( y+\delta y \right )-\sin y}= \frac{1}{\cos y}$$
    $$\displaystyle

    = \frac{1}{\sqrt{\left ( 1-\sin ^{2}y \right )}}= \frac{1}{\sqrt{\left (

    1-x^{2} \right )}}$$
    Note that when $$\displaystyle :\delta x\rightarrow 0, \delta y$$ also tends to zero.
  • Question 6
    1 / -0
    If the tangent to the curve $$x=a \, (\theta + \sin \, \theta), y=a (1+ \cos \,\theta)$$ at $$ \theta=\dfrac{\pi}{3}$$ makes an angle $$\alpha (0 \leq\alpha < \pi)$$ with x-axis, then $$\alpha$$ =
    Solution

    $$x=a\left( \theta +\sin { \theta  }  \right) $$ 

    $$y=a\left( 1+\cos { \theta  }  \right) $$ 

    If tangent to curve at $$\theta = { \pi  }/{ 3 }$$, makes angle $$\alpha$$ with x-axis, 

    $$\Rightarrow$$ slope of tangent = $$\tan { \alpha  } $$

    $$\Rightarrow$$ $$\left. \begin{matrix} \tan { \alpha  } ={ { \dfrac { { dy }/{ { d\theta  } } }{ { dx }/{ { d\theta  } } }  } }{ {  } } \\  \end{matrix} \right| _{ \theta ={ \pi  }/{ 3 } }$$

    $$=\dfrac {-a\sin \theta}{ a\left( 1+\cos { \theta  }  \right)  }$$ 

    $$\left. \begin{matrix}\dfrac{-\sin \theta} { 1+\cos { \theta  }  } \\ \end{matrix}\right|_{ \theta ={ \pi  }/{ 3 } }$$

    $$=-\dfrac{\sqrt{3}/2} { 1+{ 1 }/{ 2 } }$$ 

    $$\tan { \alpha  } \ =-\dfrac{1}{\sqrt { 3 }} $$ 

    Ans. $$\alpha \ =\ { 5{ \pi  } }/{ 6 }$$

     

  • Question 7
    1 / -0
    If $$y$$ is expressed in terms of a variable $$x$$ as $$y = f(x)$$, then $$y$$ is called
    Solution
    If $$y$$ is expressed in terms of a variable $$x$$ as $$y=f(x)$$, then $$y$$ is called explicit function.
  • Question 8
    1 / -0
    If $$f(x)=\begin{cases}
    ax &a<1&\\
    ax^2+bx+2 &a\ge 1&.
    \end{cases}$$
    Then the values of $$a$$, $$b$$ for which $$f(x)$$ is differentiable, are
    Solution
    Given the function $$f(x)$$ is differentiable, then it is differentiable at $$x=1$$ and it will be continuous there at.
    Then using continuity condition at $$x=1$$, 
    $$\lim\limits_{x\to 1^-}f(x)=\lim\limits_{x\to 1+}f(x)$$
    or, $$a=a+b+2$$
    or, $$b=-2$$.
    Now using differentiability at $$x=1$$ we get,
    $$\lim\limits_{x\to 1^-}f'(x)=\lim\limits_{x\to 1^+}f'(x)$$
    or, $$a=2a+b$$
    or, $$a=-b$$
    or, $$a=2$$.
    $$\therefore a=2,b=-2$$.
    so, option (B) is true.
  • Question 9
    1 / -0
    Let $$f(x)=x^2e^x$$ then $$f''(0)=$$
    Solution
    Given,
    $$f(x)=x^2e^x$$
    Now differentiating both sides with respect to $$x$$ we get,
    $$f'(x)=x^2e^x+2xe^x$$
    Again differentiating both sides with respect to $$x$$ we get,
    $$f''(x)=x^2e^x+4xe^x+2e^x$$.
    Now $$f''(0)=2$$.
  • Question 10
    1 / -0
    If $$f(x)=\dfrac{1}{2}\left [ \left | \sin x \right |+\sin x \right ],\ 0 < x \leq 2\pi$$, then $$f$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now