Self Studies

Continuity and Differentiability Test - 14

Result Self Studies

Continuity and Differentiability Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    lf $$y=\sqrt{2x-x^{2}}$$ then $$y^{3}.y''=$$
    Solution
    $$y^{2}=2x-x^{2}$$

    $$2yy'=2-2x$$

    $$yy'=1-x$$

    $$(y')^{2}+yy''=-1$$

    $$y^{3}y''=-y^{2}-(yy')^{2}$$

    $$y^{3}y''=-(2x-x^{2})-(1-2x+x^{2})$$

    $$y^{3}y''=-1$$
  • Question 2
    1 / -0
    $${A} :$$ If $$x = ct, y = \dfrac{c}{t}$$, then at $$t=1,  \dfrac{dy}{dx} =$$
    $$B:$$ If $$x=3\cos\theta -\cos^{3}\theta, y=3\sin\theta-\sin^{3}\theta$$, then at $$\theta = \dfrac{\pi}{3}, \dfrac{dy}{dx} = $$

    $$C:$$ If $$x = a\left(t+ \dfrac{1}{t}\right), y = a\left(t-\dfrac{1}{t}\right)$$, then at $$t =2, \dfrac{dy}{dx} = $$
    $$D:$$ Derivative of $$\log(\sec x)$$ with respect to $$\tan x$$ at $$x = \dfrac{\pi}{4}$$ is$$\\$$
    Arrangement of the above values in the increasing order is
    Solution
    For $$A$$
    $$\dfrac{dy}{dx}=\dfrac{dy}{dt}\times\dfrac{dt}{dx} =-\dfrac{c}{t^2}\times\dfrac{1}{c} = -\dfrac{1}{t^2}$$

    At $$t=1, \dfrac{dy}{dx} = -1$$

    For $$B$$

    $$\dfrac{dy}{dx}=\dfrac{dy}{d\theta}\times\dfrac{d\theta}{dx}$$

    $$= 3\cos\theta-3\sin^2\theta\times \cos\theta \times \dfrac{1}{-3\sin\theta+3\sin\theta\times \cos^2\theta}$$

    $$=-\dfrac{3\cos\theta(1-\sin^2\theta)}{3\sin\theta(1-\cos^2\theta)}= -\dfrac{\cos^3\theta}{\sin^3\theta}$$

    At $$\theta = \dfrac{\pi}{3}, \dfrac{dy}{dx} = -\dfrac{1}{3\sqrt3}$$

    For $$C$$
    $$\dfrac{dy}{dx}=\dfrac{dy}{dt}\times\dfrac{dt}{dx} =a\left(1+\dfrac{1}{t^2}\right)\times\dfrac{1}{a\left(1-\dfrac{1}{t^2}\right)}=\dfrac{t^2+1}{t^2-1}$$

    At $$t = 2, \dfrac{dy}{dx} = \dfrac{5}{3}$$

    For $$D$$,
    $$\dfrac{dy}{dx}= \dfrac{\sec x\tan x}{\sec x}\times\dfrac{1}{\sec^2x} = \sin x\cos x$$

    At $$x = \dfrac{\pi}{4}, \dfrac{dy}{dx} = \dfrac{1}{2}$$

    So, the arrangement would be $$A, B, D, C$$
  • Question 3
    1 / -0
    Let $$f(x)=\sin x,g(x)=x^{2},\ h(x)=\log x$$,If $$F(x)=h\{f(g(x))\}$$, then $$\displaystyle \frac{d^{2}F}{dx^{2}}=$$
    Solution

    $$F(x)=log  \sin x^{2}$$
    $$ \dfrac {dF(x)}{dx}= \dfrac {2x \cos(x^{2})}{\sin x^{2}}$$

    $$ \dfrac {d^{2}F(x)}{dx^{2}}= \dfrac {(2 \cos x^{2}-4x^{2}\sin x^{2})\sin x^{2}-(2x  \cos x^{2})^{2}}{\sin^{2}x^{2}}$$

    $$ \dfrac {d^{2}F(x)}{dx^{2}}=2\cot x^{2}-4x^{2} cosec {2x^{2}}$$

  • Question 4
    1 / -0
    If $$t\left( 1+{ x }^{ 2 } \right) =x$$ and $${ x }^{ 2 }+{ t }^{ 2 }=y,$$ then at $$x=2,$$ the value of $$\displaystyle\frac{dy}{dx}$$
    Solution
    $$\displaystyle { x }^{ 2 }+{ t }^{ 2 }=y\Rightarrow \frac { dy }{ dx } =2x+2t.\frac { dt }{ dx } $$   ...(1)
    As $$\displaystyle t=\frac { x }{ 1+{ x }^{ 2 } } \Rightarrow \frac { dt }{ dx } =\frac { 1-{ x }^{ 2 } }{ { \left( 1+{ x }^{ 2 } \right)  }^{ 2 } } $$ 
    Substitute these value of $$t$$ and $$\displaystyle\frac{dt}{dx}$$ in (1), we get
    $$\displaystyle \frac { dy }{ dx } =2x+\frac { 2x }{ 1+{ x }^{ 2 } } .\frac { 1-{ x }^{ 2 } }{ { \left( 1+{ x }^{ 2 } \right)  }^{ 2 } } $$
    On ptiing $$x=2$$ in $$\displaystyle\frac{dy}{dx}$$, we get
    $$\displaystyle \frac { dy }{ dx } =\frac { 488 }{ 125 } $$
  • Question 5
    1 / -0
    If $$\mathrm{x}=\mathrm{a}\mathrm{t}^{2},\ \mathrm{y}=2\mathrm{a}\mathrm{t}$$, then $$\displaystyle \frac{\mathrm{d}^{2}\mathrm{y}}{\mathrm{d}\mathrm{x}^{2}}$$ is
    Solution
    We have $$x=at^2, y=2at$$
    $$\Rightarrow \dfrac{dx}{dt}=2at=y, \dfrac{dy}{dt}=2a$$
    Thus $$\dfrac{dy}{dx}=\dfrac{dy/dt}{dx/dt}=\dfrac{2a}{y}$$
    $$\Rightarrow \dfrac{d^2y}{dx^2}=2a\left(-\dfrac{1}{y^2}\right)\dfrac{dy}{dx}=2a\left(-\dfrac{1}{y^2}\right)\dfrac{2a}{y}=-\dfrac{(2a)^2}{y^3}=-\dfrac{(2a)^2}{(2at)^3}=-\dfrac{1}{2at^3}$$
  • Question 6
    1 / -0

     $$\displaystyle \frac{\mathrm{d}}{\mathrm{d}\mathrm{x}}[l \mathrm{o}\mathrm{g}(\mathrm{a}\mathrm{x})^{\mathrm{x}}]$$, where $$a$$ is a constant, is equal to
    Solution
    $$\frac{d}{dx}\left ( x \log ax \right )= \log (ax) +\dfrac{ax}{ax}=1+\log(ax)$$  
  • Question 7
    1 / -0
     If $$r=\sqrt{x^{2}+y^{2}+z^{2}}$$ and $$x=2\sin 3t,y=2\cos 3t,z=8t$$  then $$\displaystyle \frac{dr}{dt}=$$
    Solution
    Given : $$x=2\sin 3t,y=2\cos 3t,z=8t$$
    $$r=\sqrt{x^{2}+y^{2}+z^{2}}$$ 
    $$=\sqrt{(2\sin 3t)^{2}+(2 \cos 3t)^{2}+(8t)^{2}}$$
    $$=\sqrt{4\sin^{2}3t + 4\cos^{2}3t+64t^{2}}$$
    $$=\sqrt{4+64t^{2}}$$
    $$\implies r^{2}=4+64t^{2}$$
    Differentiating above equation we get
    $$2r\dfrac{dr}{dt}=2\times 64\times t$$
    $$\implies \dfrac{dr}{dt}=\dfrac{64\times t}{r}$$

    $$\implies \dfrac{dr}{dt}=\dfrac{64\times t}{\sqrt{4+64t^{2}}}=\dfrac{64t}{2\sqrt{1+16t^{2}}}=\dfrac{32t}{\sqrt{1+16t^{2}}}$$
  • Question 8
    1 / -0
    If $$ x=\cos\theta+\theta\sin\theta$$, $$ y=\sin\theta-\theta\cos\theta$$, then $${y}_{2}$$ is
    Solution
    The given information in the question is:
    $$x = \cos \theta + \theta \sin \theta $$ and $$y = \sin \theta -\theta \cos \theta $$
    Taking their first derivatives with respect to $$\theta$$ we get,
    $$\Rightarrow \cfrac{dx}{d\theta }= -\sin \theta  + \sin \theta +\theta \cos \theta  $$
    $$\Rightarrow \cfrac{dx}{d\theta }= \theta \cos \theta $$ and
    $$\Rightarrow \cfrac{dy}{d\theta }= \cos \theta -\cos \theta +\theta \sin \theta $$
    $$\Rightarrow \cfrac{dy}{d\theta }= \theta \sin \theta $$
    so $$\cfrac{dy}{dx} = \cfrac{dy}{d\theta} \times \cfrac{d\theta}{dx}$$
    $$\Rightarrow \cfrac{dy}{dx} = \cfrac{\theta \sin \theta}{\theta \cos \theta}$$
    $$\Rightarrow \cfrac{dy}{dx}= \tan \theta$$
    Now $$\cfrac{d^2y}{dx^2}=\cfrac{d}{dx}\left ( \cfrac{dy}{dx} \right )$$
    $$\Rightarrow \cfrac{d^2y}{dx^2}=\cfrac{d}{dx}\left ( \tan \theta \right )$$
    $$\Rightarrow \cfrac{d^2y}{dx^2}=\cfrac{d}{d\theta}\left ( \tan \theta \right )\times \cfrac{d\theta}{dx}$$
    $$\Rightarrow \cfrac{d^2y}{dx^2}=\sec ^2\theta\times \cfrac{1}{\theta \cos \theta}$$
    $$\Rightarrow \cfrac{d^2y}{dx^2}=\cfrac{\sec ^3 \theta}{\theta}$$
  • Question 9
    1 / -0
    If $$y=\sin^{-1}x\ then \ (1-x^{2})\displaystyle \frac{d^{2}y}{dx^{2}}=$$
    Solution
    Given $$y=\sin^{-1}x$$

    Differentiating w.r.t. x, we get,

    $$\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-x^{2}}}$$

    Differentiating w.r.t. $$x$$, we get,

    $$\dfrac{d^{2}y}{dx^{2}}=\dfrac{x}{(1-x^{2})^{3/2}}$$

    $$(1-x^{2})\dfrac{d^{2}y}{dx^{2}}=\dfrac{x}{\sqrt{1-x^2}}=x\dfrac{dy}{dx}$$

  • Question 10
    1 / -0

    lf $$y=\sqrt{\cos 2x}$$, then $$y\displaystyle \frac{d^{2}y}{dx^{2}}+2y^{2}=$$
    Solution
    $$y^{'}=\dfrac{-sin2x}{\sqrt{cos2x}}$$

    $$yy^{'}=-sin2x$$

    $$(y^{'})^2+yy^{''}=-2 cos2x$$

    $$(y^{'})^2+yy^{''}=-2y^{2}$$

    $$yy^{''}+2y^{2}=-(y^{'})^2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now