Self Studies

Continuity and Differentiability Test - 15

Result Self Studies

Continuity and Differentiability Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x=t^{2},y=t^{3} \    then \ \  y_{2}=$$
    Solution
    Given  $$x=t^{2},y=t^{3}$$
    $$\displaystyle \frac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\frac{3t^{2}}{2t}=\frac{3t}{2}$$

    $$\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{d}{dt}\left ( \frac{dy}{dx} \right )\frac{dt}{dx}=\left ( \frac{3}{2} \right )\frac{1}{2t}=\frac{3}{4t}$$
  • Question 2
    1 / -0
    Suppose $$f(x)=x+\cot x$$ then $$(\sin^{2}x)f''(x)+2x=$$
    Solution
    Given, $$f(x)=x+\cot x$$

    Then $$f^{'}(x)=1-cosec^{2}x=\cot^{2}x$$

    $$f^{''}(x)=+2\cot n\  cosec ^{2}x$$

    Therefore, $$\sin^{2}xf''(x)=2 \cot x$$

    $$\sin^{2}xf''(x)+2x=2cotx+2x$$

    $$\sin^{2}xf^{''}(x)+2x=2(cotx+x)$$
    $$\therefore \sin^{2}xf^{''}(x)+2x=2f(x)$$
  • Question 3
    1 / -0
    lf $$y=e^{-2x}\cos 3x$$ and $$\displaystyle \frac{d^{2}y}{dx^{2}}+a(\frac{dy}{dx})+by=0$$, then $$a=?,b=?$$
    Solution
    $$y'=-2e^{-2x}\cos3x-3e^{-2x}\sin3x$$
    $$y''=-2y'+6e^{-2x}\sin3x-9e^{-2x}\cos3x$$
    $$y''=-2y'+2(-y^{1}-2y)-9y$$
    $$y''=-4y'-13y$$
    $$y''+4y'+13y=0$$
    Then, $$a=4, b=13$$.
  • Question 4
    1 / -0

    $$y=a\cos ec(b-x)$$, then $$yy_{2}-2y_{1}^{2}=$$
    Solution

    $$y^{‘}=-a cosec(b-x)cot(b-x)(-1)$$
    $$y^{‘}=y cot(b-x)$$
    $$y^{‘‘}=y^{‘}cot(b-x)+y \ cosec^{2}(b-x)$$
    $$y^{‘‘}=\frac{y^{12}}{y}+y(1+\frac{y^{2}}{y^{2}})$$

    $$y y^{‘‘}=2(y')^{2}+y^{2}$$

  • Question 5
    1 / -0
    The derivative of $$f(\tan x)$$ w.r.t. $$g (\sec x)$$ at $$x=\displaystyle \frac{\pi }{4},$$ where $${f}'(1)=2$$ and $${g}'(\sqrt{2})=4,$$ is
    Solution
    $$y = f(\tan x)$$ and $$z = g (\sec x)$$

    $$\dfrac{dy}{dx}= f'(\tan x) . \sec^{2}x$$ and $$\dfrac{dz}{dx}= g'(\sec x) . \sec x \tan x$$

    $$\therefore \dfrac{dy}{dz}= \dfrac{f'(\tan x).\sec^{2} x}{g'(\sec x).\sec x \tan x}$$

    $$\left.\begin{matrix}\dfrac{dy}{dz}\end{matrix}\right|_{x=\tfrac{\pi }{4}}=\dfrac{f'(1).(\sqrt{2})^{2}}{g'(\sqrt{2}).(\sqrt{2})}=\dfrac{1}{\sqrt{2}}$$
  • Question 6
    1 / -0

    If $$y=\displaystyle \frac{1}{1+x+x^{2}+x^{3}}$$, then $$y_{2}(0)=$$
    Solution
    Given, $$y=\dfrac{1}{(1+x)(1+x^{2})}$$
    $$\Rightarrow (1+x^{2})y=\dfrac{1}{1+x}$$
    $$\Rightarrow 2xy+(1+x^{2})y^{'}=\dfrac{-1}{(1+x)^{2}}$$
    $$\Rightarrow 2y+2xy^{'}+2xy^{'}(1+x^{2})y^{''}=\dfrac{2}{(1+x^{2})^{3}}$$
    $$\Rightarrow 2+y^{''}=2$$
    $$\Rightarrow  y^{''}=0$$
  • Question 7
    1 / -0
    If $$y^x=x^y$$, then find $$\displaystyle\frac{dy}{dx}$$.
    Solution
    $$y^x=x^y$$

    Taking log on both sides

    $$\Rightarrow$$ $$\log{y^x}=\log{x^y}$$

    $$\Rightarrow$$ $$x\log{y}=y\log{x}$$

    $$\Rightarrow$$ $$\displaystyle x\frac{1}{y}\frac{dy}{dx}+\log{y}\times 1=\frac{y}{x}+\log{x}\frac{dy}{dx}$$

    $$\Rightarrow$$ $$\displaystyle\left(\frac{x}{y}-\log{x}\right)\frac{dy}{dx}=\frac{y}{x}-\log{y}$$

    $$\Rightarrow$$ $$\displaystyle\frac{dy}{dx}=\frac{\displaystyle\frac{y}{x}-\log{y}}{\displaystyle\frac{x}{y}-\log{x}}=\frac{y(y-x\log{y})}{x(x-y\log{x})}=\frac{y(x\log{y}-y)}{x(y\log{x}-x)}$$

  • Question 8
    1 / -0
    If $$\displaystyle x=\frac{2t}{1+t^2}$$, $$\displaystyle y=\frac{1-t^2}{1+t^2}$$, then $$\displaystyle\frac{dy}{dx}$$ at $$t=2$$ is
    Solution
    Given that
    $$\displaystyle x=\frac{2t}{1+t^2}$$, $$\displaystyle y=\frac{1-t^2}{1+t^2}$$
    By differentiating w.r. to $$t$$, we get
    $$\displaystyle \frac { dx }{ dt } =\frac { \left( \left( 1+{ t }^{ 2 } \right)\displaystyle  \frac { d }{ dt } \left( 2t \right) -2t\displaystyle \frac { d }{ dt } \left( 1+{ t }^{ 2 } \right)  \right)  }{ { \left( 1+{ t }^{ 2 } \right)  }^{ 2 } } $$
    And $$\displaystyle \frac { dy }{ dt } =\frac { \left( \left( 1+{ t }^{ 2 } \right) \displaystyle \frac { d }{ dt } \left( 1-{ t }^{ 2 } \right) -\left( 1-{ t }^{ 2 } \right) \displaystyle \frac { d }{ dt } \left( 1+{ t }^{ 2 } \right)  \right)  }{ { \left( 1+{ t }^{ 2 } \right)  }^{ 2 } } $$
    $$\displaystyle\frac{dx}{dt}=\frac{(1+t^2)2-2t\times 2t}{{(1+t^2)}^2}=\frac{2-2t^2}{{(1+t^2)}^2}$$

    $$\displaystyle\frac{dy}{dt}=\frac{(1+t^2)(-2t)-(1-t^2)2t}{{(1+t^2)}^2}=\frac{-4t}{{(1+t^2)}^2}$$
    $$\displaystyle\frac{dy}{dx}=\frac{\displaystyle\frac{dy}{dt}}{\displaystyle\frac{dx}{dt}}=\frac{-4t}{2-2t^2}=\frac{2t}{t^2-1}$$
    $$\therefore { \left( \displaystyle \frac { dy }{ dx }  \right)  }_{ t=2 }=\displaystyle \frac { 4 }{ 3 } $$

  • Question 9
    1 / -0
    $$\displaystyle\frac{dy}{dx}$$ for $$y=x^x$$ is
    Solution
    $$y=x^x$$
    Taking $$\log $$ on both the sides
    $$\log { y } =\log { \left( { x }^{ x } \right)  } $$
    $$\log { y } =x\log { x } $$
    Differentiate w.r to $$x$$
    $$\displaystyle \frac { 1 }{ y } \frac { dy }{ dx } =x\frac { d }{ dx } \left( \log { x }  \right) +\left( \log { x }  \right) \frac { d }{ dx } \left( x \right) $$
    $$\displaystyle \frac { dy }{ dx } =y\left[ \frac { x }{ x } +\log { x }  \right] $$
    $$\displaystyle \frac { dy }{ dx } ={ x }^{ x }\left[ 1+\log { x }  \right] $$
  • Question 10
    1 / -0
    Let the function $$y=f(x)$$ be given by $$x=t^{5}-5t^{3}-20t+7$$ and $$y=4t^{3}-3t^{2}-18t+3$$, where $$t\epsilon \left ( -2, 2 \right )$$. Then $$f^{'}(x)$$ at $$t=1$$ is ?
    Solution
    Given, $$x=t^{5}-5t^{3}-20t+7$$
    $$\displaystyle \frac{dx}{dt}=5t^{4}-15t^{2}-20$$
    $$\displaystyle \left (\frac{dx}{dt}\right)_{t=1}=-30$$
    Also, given $$y=4t^{3}-3t^{2}-18t+3$$
    $$\displaystyle \frac{dy}{dt}=12t^{2}-6t-18$$
    $$\displaystyle \left (\frac{dy}{dt}\right)_{t=1}=-12$$
    So, $$\displaystyle \left (\frac{dy}{dx}\right)_{t=1}=\frac{2}{5}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now