Self Studies

Continuity and Differentiability Test - 17

Result Self Studies

Continuity and Differentiability Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Verify Rolle's theorem the function $$\displaystyle f(x)=x^{3}-4x $$  on  $$ [-2,2].$$ If you think it is applicable in the given interval then find the stationary point ?
    Solution
    The function $$\displaystyle f(x)=x^{3}-4x$$ is a polynomial and so it is continuous and differentiable at all x$$\displaystyle \epsilon $$ R.
    In particular it is continuous in the closed interval $$[-2,2]$$ .
    Also $$f(-2)]=0=f(2)$$. Thus , $$f(x)$$ satisfies all three conditions of Rolle's theorem in $$(-2,2)$$.
    Therefore , there must exist at least one real number $$'x'$$ in the
    open interval $$(-2,2)$$ for which $$f'(x)=0$$
    Also $$\displaystyle f'(x)= 3x^{2}-4$$
    Now $$\displaystyle f^{'}(x)=0$$ gives $$3x^{2}-4=0$$ or $$x=\pm \dfrac{2}{\sqrt{3}}$$ which is also known as stationary point.
    Both these value lie in the open interval $$(-2,2)$$ and thus the conclusion of Rolle's theorem is verified.
  • Question 2
    1 / -0
    Verify the Rolle's theorem for the function $$\displaystyle f(x)=x^{2}$$ in $$(-1,1)$$
    Solution
    $$f\left( x \right) ={ x }^{ 2 }$$
    $${ x }^{ 2 }$$ is continuous in $$[-1,1]$$ since it is quadratic equation
    $$f'\left( x \right) =2x$$
    $$2x$$ is defined in $$(-1,1)$$
    $$\Rightarrow f\left( x \right) $$ is differentiable on $$(-1,1)$$
    $$f\left( -1 \right) =f\left( 1 \right) =1$$
    There exists a $$c,a\le c\le b$$ such that
    $$f'\left( c \right) =0$$
    $$2c=0$$
    $$\Rightarrow c=0$$ which lies in $$(-1,1)$$
  • Question 3
    1 / -0
    Verify the Rolle's theorem for the function $$\displaystyle f(x)=x^{2}-3x+2$$ on the interval[1,2]
    Solution
    It can be easily seen that $$f(x)=x^{2}-3x+2$$ is continuous as differentiable on R (being a polynomial) $$\Rightarrow f(x)$$ is continous in (1,2) and differentiable in [1,2]. Also, we have

    $$f(1)=f(2)=0$$.
     Thus, $$f(x)$$ satisfies all the conditions of Rolle's theorem in $$[1,2]$$ $$\Rightarrow \displaystyle \exists$$ at least one number, say $$x$$ in $$[1,2]$$ such that $$\displaystyle
    f^{'}(c)=0.$$ Now, $$\displaystyle f^{'}(x)=2x-3=0\Rightarrow x=\frac{3}{2}$$ Since, the root (stationary point)  $$\displaystyle x=\frac{3}{2}$$ lies in the interval(1,2). 
    Hence Rolle's theorem is verified.
  • Question 4
    1 / -0
    Verify Rolle's theorem for the function $$\displaystyle f(x)=10x-x^{2}$$ in the interval [0,10]
    Solution
    $$f\left( x \right) =10x-{ x }^{ 2 }\quad \quad \left[ 0,10 \right] $$
    $$10x-{ x }^{ 2 }$$ is continuous in $$\left[ 0,10 \right] $$ since it is polynomial function.
    $$f'\left( x \right) =10-2x$$ is defined for all values of x in $$(0,10)$$
    $$\Rightarrow f\left( x \right) $$ is differentiable  on $$(0,10)$$
    $$f\left( 0 \right) =f\left( 10 \right) =0$$
    $$\therefore $$ There exists a $$c,a\le c\le b$$
    $$0\le c\le 10$$
    Such that 
    $$f'\left( c \right) =0$$
    $$10-2x=0$$
    $$x=5$$  $$5$$ lies in $$\left[ 0,10 \right] $$
  • Question 5
    1 / -0
    If $$y = \displaystyle (\tan x)^{\log x}$$, then $$\cfrac{dy}{dx} = $$
    Solution
    Let  $$y = \displaystyle (\tan x)^{\log x}$$
    $$\log y = \log x .\log \tan x$$
    Differentiating both side w.r.t $$x$$
    $$\cfrac{1}{y}.\cfrac{dy}{dx} = \cfrac{\log \tan x}{x}+\cfrac{\log x}{\tan x}(\sec^2x)$$
    $$\Rightarrow \cfrac{dy}{dx} =  (\tan x)^{\log x} \left[\cfrac{\log \tan x}{x}+\cfrac{\log x}{\tan x}(\sec^2x) \right]$$
  • Question 6
    1 / -0
    Verify Lagrange's mean value for the function $$f(x)=\displaystyle \sin x$$ in $$\displaystyle \left [ 0,\frac{\pi }{2} \right ]$$
    Solution
    The function $$f\left( x \right)=\sin { x } $$ is continuous and differentiable for all $$x\in R$$.

    In particular it is continuous in the closed interval $$\displaystyle \left[ 0,\frac { \pi  }{ 2 }  \right] $$ and differentiable in the open interval $$\displaystyle \left( 0,\frac { \pi  }{ 2 }  \right) $$ as is required for the application of lagrange's mean value theorem for it.

    By lagrange's mean value theorem, there must exist at least one value of $$'c'$$ of $$x$$ lying in the open interval $$\displaystyle \left( 0,\frac { \pi  }{ 2 }  \right) $$ such that 
    $$\displaystyle \frac { f\left( \frac { \pi  }{ 2 }  \right) -f\left( 0 \right)  }{ \left( \frac { \pi  }{ 2 }  \right) -0 } =f'\left( c \right) $$   ...(1)

    Let us verify it, we have
    $$\displaystyle f\left( 0 \right) =\sin { \left( 0 \right)  } =0;f\left( \frac { \pi  }{ 2 }  \right) =\sin { \left( \frac { \pi  }{ 2 }  \right)  } =1$$

    Also $$f'\left( x \right) =\cos { x } $$ gives $$f'\left( c \right) =\cos { c } $$.

    Putting these values in (1), we have 
    $$\displaystyle \frac { 1-0 }{ \frac { \pi  }{ 2 }  } =\cos { \left( c \right) \Rightarrow \cos { \left( c \right)  }  } =\frac { 2 }{ \pi  } \Rightarrow c=\cos ^{ -1 }{ \left( \frac { 2 }{ \pi  }  \right)  } $$

    Since $$\displaystyle 0<\frac { 2 }{ \pi  } <1,$$ therefore the principal value of $$\displaystyle c=\cos ^{ -1 }{ \left( \frac { 2 }{ \pi  }  \right)  } $$ lies in the open interval $$\displaystyle \left( 0,\frac { \pi  }{ 2 }  \right) $$ and so is the required value of $$c$$

    This verifies lagrange's mean value theorem
  • Question 7
    1 / -0
    Find 'c' of the mean value theorem, if $$\displaystyle f(x)=x(x-1)(x-2);a=0, b=1/2$$
    Solution
    We have $$f\left( a \right) =f\left( 0 \right) =0$$ and $$\displaystyle f\left( b \right) =f\left( \frac { 1 }{ 2 }  \right) =\frac { 3 }{ 8 } $$
    $$\displaystyle \therefore \frac { f\left( b \right) -f\left( a \right)  }{ b-a } =\frac { \frac { 3 }{ 8 } -0 }{ \frac { 1 }{ 2 } -0 } =\frac { 3 }{ 4 } $$
    Now 
    $$f\left( x \right) ={ x }^{ 3 }-3{ x }^{ 2 }+2x\\ \Rightarrow f'\left( x \right) ={ 3x }^{ 2 }-6x+2\\ \Rightarrow f'\left( c \right) ={ 3c }^{ 2 }-6c+2$$
    Putting all these value in lagrange's mean value theorem
    $$\displaystyle \frac { f\left( b \right) -f\left( a \right)  }{ b-a } =f'\left( c \right) ,\left( a<c,b \right) $$
    We get $$\displaystyle \frac { 3 }{ 4 } ={ 3c }^{ 2 }-6c+2\Rightarrow c=1\pm \frac { \sqrt { 21 }  }{ 6 } $$
    Hence $$\displaystyle c=\frac { 1-\sqrt { 21 }  }{ 6 } $$ lies in the open interval $$\displaystyle \left( 0,\frac { 1 }{ 2 }  \right) $$
    Therefore it is the required value
  • Question 8
    1 / -0
    Discuss the applicapibility of Rolle's Theorem to the function $$\displaystyle f(x)=x^{2/3}$$ in (-1,1).
    Solution
    $$\displaystyle f\left( x \right)={ x }^{ \frac { 2 }{ 3 }  }\Rightarrow f'\left( x \right) =\frac { 2 }{ x } { x }^{ -\frac { 1 }{ 3 }  }$$
    $$\displaystyle\therefore \lim _{ x\rightarrow 0 }{ f'\left( x \right) } =\lim _{ x\rightarrow 0 }{ \frac { 2 }{ 3 } { \left( 0+h \right)  }^{ -\frac { 1 }{ 3 }  } } =\infty$$
    $$\displaystyle Rf'\left( 0 \right) =\lim _{ h\rightarrow 0 }{ \left\{ \frac { f\left( 0+h \right) -f\left( 0 \right)  }{ h }  \right\}  } =\lim _{ h\rightarrow 0 }{ \left\{ \frac { { h }^{ \frac { 2 }{ 3 }  }-1 }{ h }  \right\}  } =+\infty$$
    $$\displaystyle Lf'\left( 0 \right) =\lim _{ h\rightarrow 0 }{ \left\{ \frac { f\left( 0+h \right) -f\left( 0 \right)  }{ -h }  \right\}  } =f'\left( 0 \right) =\lim _{ h\rightarrow 0 }{ \left\{ \frac { { \left( -h \right)  }^{ \frac { 2 }{ 3 }  } }{ h }  \right\}  } =-\infty$$
    $$\displaystyle \therefore Lf'\left( 0 \right) \neq Rf'\left( 0 \right)$$
    $$\displaystyle\therefore f'\left( 0 \right)$$ does not exist showing that $$f'(x)$$ does not exists in the open interval $$(-1,1)$$
    Hence, Rolle's Theorem is not applicable
    although $$f(-1)=f(1)=1$$ and $$f(x)$$ is continuous in the closed interval $$(-1,1)$$
  • Question 9
    1 / -0
    If $$\displaystyle x=2 \cos t-cos 2t, y=2\sin t-\sin 2t,$$ find the value of $$dy/dx$$.
    Solution
    $$\dfrac{dx}{dt}=\dfrac{d}{dt}\left(2\cos \left(t\right)-\cos \left(2t\right)\right)$$
    $$=\dfrac{d}{dt}\left(2\cos \left(t\right)\right)-\dfrac{d}{dt}\left(\cos \left(2t\right)\right)$$
    $$=-2\sin \left(t\right)-\left(-2\sin \left(2t\right)\right)$$
    $$=-2\sin \left(t\right)+2\sin \left(2t\right)$$

    $$\dfrac{dy}{dt}=\dfrac{d}{dt}\left(2\sin \left(t\right)-\sin \left(2t\right)\right)$$
    $$=\dfrac{d}{dt}\left(2\sin \left(t\right)\right)-\frac{d}{dt}\left(\sin \left(2t\right)\right)$$
    $$=2\cos \left(t\right)-\cos \left(2t\right)\cdot \:2$$

    $$\dfrac{dy}{dx}=\dfrac{dy}{dt}\times\dfrac{dt}{dx}=\dfrac{cos(t)-cos(2t)}{-sin(t)+sin(2t)}=\dfrac{2sin(\dfrac{3t}{2})sint}{2cos(\dfrac{3t}{2})sin(t)}=tan(\dfrac{3t}{2})$$

  • Question 10
    1 / -0
    The function $$f(x) = \displaystyle \sin ^{-1}(\cos x)is :-$$
    Solution
    $$f(0-) = \displaystyle \lim_{h\to 0}\sin ^{-1}(\cos -h)=\lim_{h\to 0}\sin ^{-1}(\cos h) = \sin^{-1}1$$, Since $$\cos(-x) = \cos x$$
    and $$f(0+) = \displaystyle \lim_{h\to 0}\sin ^{-1}(\cos h) = \sin^{-1}1$$
    Clearly at $$x=0$$, L.H.L $$=$$  R.H.L $$=f(0) \Rightarrow f(x)$$ is continuous at $$x =0$$
    Also  $$\displaystyle {y}'=-\frac{\sin x}{\sqrt{1-\cos ^{2}x}}=-\frac{\sin

    x}{\sqrt{\sin ^{2}x}}=-\frac{\sin x}{\left | \sin x \right |}$$
    So the function is not differentiable at the points where $$\sin x=0$$,
    that is, for $$x=k\pi \left ( k\in I \right )$$. In particular, $$x=0$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now