The function $$f\left( x \right)=\sin { x } $$ is continuous and differentiable for all $$x\in R$$.
In particular it is continuous in the closed interval $$\displaystyle \left[ 0,\frac { \pi }{ 2 } \right] $$ and differentiable in the open interval $$\displaystyle \left( 0,\frac { \pi }{ 2 } \right) $$ as is required for the application of lagrange's mean value theorem for it.
By lagrange's mean value theorem, there must exist at least one value of $$'c'$$ of $$x$$ lying in the open interval $$\displaystyle \left( 0,\frac { \pi }{ 2 } \right) $$ such that
$$\displaystyle \frac { f\left( \frac { \pi }{ 2 } \right) -f\left( 0 \right) }{ \left( \frac { \pi }{ 2 } \right) -0 } =f'\left( c \right) $$ ...(1)
Let us verify it, we have
$$\displaystyle f\left( 0 \right) =\sin { \left( 0 \right) } =0;f\left( \frac { \pi }{ 2 } \right) =\sin { \left( \frac { \pi }{ 2 } \right) } =1$$
Also $$f'\left( x \right) =\cos { x } $$ gives $$f'\left( c \right) =\cos { c } $$.
Putting these values in (1), we have
$$\displaystyle \frac { 1-0 }{ \frac { \pi }{ 2 } } =\cos { \left( c \right) \Rightarrow \cos { \left( c \right) } } =\frac { 2 }{ \pi } \Rightarrow c=\cos ^{ -1 }{ \left( \frac { 2 }{ \pi } \right) } $$
Since $$\displaystyle 0<\frac { 2 }{ \pi } <1,$$ therefore the principal value of $$\displaystyle c=\cos ^{ -1 }{ \left( \frac { 2 }{ \pi } \right) } $$ lies in the open interval $$\displaystyle \left( 0,\frac { \pi }{ 2 } \right) $$ and so is the required value of $$c$$
This verifies lagrange's mean value theorem