Self Studies

Continuity and Differentiability Test - 20

Result Self Studies

Continuity and Differentiability Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x = a \left (\cos t + \log \tan \dfrac {t}{2}\right ), y = a\sin t$$, then $$\dfrac {dy}{dx} =$$
    Solution
    Solution:
    We have, $$x=a\left(\cos t+\log\tan\cfrac t2\right), y =a\sin t$$
    Now, 
    $$\cfrac{dx}{dt}=-a\sin t+\cfrac{a}{\tan \cfrac t2}\times \sec^2\cfrac t2\times \cfrac12$$
    $$=-a\sin t+\cfrac{a}{2\sin \cfrac t2\cos\cfrac t2}$$
    $$=-a\sin t+\cfrac{a}{\sin t}$$               $$(\because \ sint=2\sin\cfrac t2\cos\cfrac t2)$$
    $$=\cfrac{a(1-\sin^2t)}{\sin t}$$
    $$=\cfrac{a\cos^2t}{\sin t}.................(i)$$
    And
    $$\cfrac{dy}{dt}=a\cos t................(ii)$$
    Now,
    From eqn.(i) and eqn.(ii), we get
    $$\cfrac{dy}{dt}\times\cfrac{dt}{dx}=a\cos t\times\cfrac{\sin t}{a\cos^2 t}$$
    $$\Longrightarrow\cfrac{dy}{dx}=\tan t$$
    Hence, A is the correct option.

  • Question 2
    1 / -0
    If $$f(x)=\cos ^{ -1 }{ \left\{ \cfrac { 1-{ \left( \log _{ e }{ x }  \right)  }^{ 2 } }{ 1+{ \left( \log _{ e }{ x }  \right)  }^{ 2 } }  \right\}  } $$, then $$f'(e)$$
    Solution
    We have
    $$\quad f(x)=\cos ^{ -1 }{ \left\{ \cfrac { 1-{ \left( \log _{ e }{ x }  \right)  }^{ 2 } }{ 1+{ \left( \log _{ e }{ x }  \right)  }^{ 2 } }  \right\}  } $$
    $$\quad =2\tan ^{ -1 }{ \left( \log _{ e }{ x }  \right)  } \quad \left[ \because \log _{ e }{ x } >0 \right] $$ (in the $$nbd$$ of $$x=e$$)
    $$\Rightarrow f'(x)=\cfrac { 2 }{ 1+{ \left( \log _{ e }{ x }  \right)  }^{ 2 } } .\cfrac { 1 }{ x } $$
    $$\Rightarrow f'(e)=\cfrac { 2 }{ 1+{ \left( \log _{ e }{ e }  \right)  }^{ 2 } } .\cfrac { 1 }{ e } $$
    $$=\cfrac { 2 }{ 1+1 } .\cfrac { 1 }{ e } $$
    $$=\cfrac { 1 }{ e } $$
  • Question 3
    1 / -0
    If $$y=\tan ^{ -1 }{ \left( \cfrac { a\cos { x } -b\sin { x }  }{ b\cos { x } +a\sin { x }  }  \right)  } $$, then $$\cfrac { dy }{ dx } $$ is equal to
    Solution
    $$y=\tan ^{ -1 }{ \left( \cfrac { a\cos { x } -b\sin { x }  }{ b\cos { x } +a\sin { x }  }  \right)  } $$
    Let $$a=r\sin { \theta  } ;b=r\cos { \theta  } $$
    $$\therefore y=\tan ^{ -1 }{ \left\{ \cfrac { r\sin { \left( \theta -x \right)  }  }{ r\cos { \left( \theta -x \right)  }  }  \right\}  } $$
    $$\Rightarrow y=\theta -x,y=\tan ^{ -1 }{ \left( \cfrac { a }{ b }  \right)  } -x$$
    $$\therefore \cfrac { dy }{ dx } =-1$$ 
  • Question 4
    1 / -0
    If $$x=\cos { \theta  } ,y=\sin { 5\theta  } $$, then
    $$(1-{ x }^{ 2 })\cfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } -x\cfrac { dy }{ dx } =$$
    Solution
    We have
    $$x=\cos { \theta  } ,y=\sin { \theta  } $$
    $$\quad \therefore \cfrac { dy }{ dx } =\cfrac { \cfrac { dy }{ d\theta  }  }{ \cfrac { dx }{ d\theta  }  } =-\cfrac { 5\cos { 5\theta  }  }{ \sin { \theta  }  } $$
    $$\Rightarrow \cfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } =-5\cfrac { d }{ d\theta  } \left( \cfrac { 5\cos { 5\theta  }  }{ \sin { \theta  }  }  \right) .\cfrac { d\theta  }{ dx } \quad $$
    $$=\cfrac { -25\sin { \theta  } \sin { 5\theta  } -5\cos { \theta  } \cos { 5\theta  }  }{ \sin ^{ 3 }{ \theta  }  } $$
    $$\quad \therefore \left( 1-{ x }^{ 2 } \right) \cfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } -x\cfrac { dy }{ dx } $$
    $$=\left( 1-\cos ^{ 2 }{ \theta  }  \right) \left[ \cfrac { -25\sin { \theta  } \sin { 5\theta  } -5\cos { \theta  } \cos { 5\theta  }  }{ \sin ^{ 3 }{ \theta  }  }  \right] -\cos { \theta  } \left[ \cfrac { -5\cos { 5\theta  }  }{ \sin { \theta  }  }  \right] $$
    $$=-25\sin { 5\theta  } =-25y$$
  • Question 5
    1 / -0
    If $$y=x\log { \left( \cfrac { x }{ a+bx }  \right)  } $$, then $${ x }^{ 3 }\cfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } $$ is equal to
    Solution
    From the given relation $$y=x\log { \left( \cfrac { x }{ a+bx }  \right)  } $$
    $$\cfrac { y }{ x } =\log { x } -\log { (a+bx) } $$
    On differentiating w.r.t $$x$$, we get
    $$\cfrac { \left( x\cfrac { dy }{ dx } -y \right)  }{ { x }^{ 2 } } =\cfrac { 1 }{ x } -\cfrac { 1 }{ a+bx } b $$ 
    Therefore, $$ x\cfrac { dy }{ dx } -y=\cfrac { ax }{ a+bx } $$    ...(i)
    Again differentiating both sides w.r.t $$x$$ we get
    $$x\cfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } +\cfrac { dy }{ dx } -\cfrac { dy }{ dx } =\cfrac { (a+bx)a-axb }{ { (a+bx) }^{ 2 } } $$
    $$\Rightarrow { x }^{ 3 }\cfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } =\cfrac { { a }^{ 2 }{ x }^{ 2 } }{ { (a+bx) }^{ 2 } } ={ \left( x\cfrac { dy }{ dx } -y \right)  }^{ 2 }$$ ..... (from Eq(i))
  • Question 6
    1 / -0
    If $$ u = 2 (t - \sin t ) $$ and $$ v = 2 (1- \cos t), $$ then $$ \dfrac {dv}{du} $$ at $$ t = \dfrac {2 \pi}{3} $$ is equal to :
    Solution
    Given, $$ u = 2 (t - \sin t ) $$ and $$ v = 2 (1- \cos t), $$
    On differentiating w.r.t. t, we get 
    $$ \dfrac {du}{dt} = 2 ( 1- \cos t) $$ and $$ \dfrac {dv}{dt} = 2 ( \sin t ) $$
    Therefore, $$  \dfrac {dv}{du} = \dfrac {dv/dt} {du/dt} $$
    $$ = \dfrac { 2 ( \sin t)} { 2 (1 - \cos t )} = \dfrac {2 \sin \frac {t}{2} \cos \frac {t}{2}}{2 \sin^2 \frac {t}{2}} $$
    $$ \Rightarrow \dfrac {dv}{du} = \cot \dfrac {t}{2} $$
    At $$ t = \dfrac { 2 \pi}{3} $$, we have
    $$ \dfrac {dv}{du} = \cot \left( \dfrac {2 \pi}{3 \times 2 } \right) = \cot \dfrac {\pi}{3} = \dfrac {1}{\sqrt3} $$
  • Question 7
    1 / -0
    Let $$f(x)=2\tan^{-1}x+\sin^{-1}\left(\displaystyle\frac{2x}{1+x^2}\right)$$. Then
    Solution
    We know that,
    $$\sin^{-1}\left(\displaystyle\frac{2x}{1+x^2}\right)=\left\{\begin{matrix} 2\tan^{-1}x, & if -1\leq x \leq 1\\ \pi -2\tan^{-1}x, & if x> 1\\ -\pi -2\tan^{-1}x, & if x < -1\end{matrix}\right.$$
    Therefore, $$ f(x)=\left\{\begin{matrix} 4\tan^{-1} x, & if -1 \leq x \leq 1\\ \pi & if x>1 \\ -\pi, & if x < -1\end{matrix}\right.$$
    $$\Rightarrow f'(x)=\left\{\begin{matrix} \displaystyle\frac{4}{1+x^2}, & if -1 < x <1 \\ 0, & if |x|>1\end{matrix}\right.$$
    $$\Rightarrow f'(2)=f'(3)=0$$ and $$f'\left(\displaystyle\frac{1}{2}\right)=\frac{4}{1+\displaystyle \left(\displaystyle \frac{1}{2}\right)^2}=\displaystyle \frac{16}{5}$$
  • Question 8
    1 / -0
    If $${ y }^{ x }-{ x }^{ y }=1$$, then the value of $$\cfrac { dy }{ dx } $$ at $$x=1$$ is
    Solution
    We have
    $$\quad { y }^{ x }-{ x }^{ y }=1....(i)$$
    $$\Rightarrow { e }^{ x\log { y }  }-{ e }^{ y\log { x }  }=1$$
    On differentiating w.r.t. $$x$$ we get
    $${ y }^{ x }\left( \cfrac { x }{ y } .\cfrac { dy }{ dx } +\log { y }  \right) -{ x }^{ y }\left( \cfrac { dy }{ dx } \log { x } +\cfrac { y }{ x }  \right) =0$$
    On putting $$x=1$$ and $$y=2$$ we get
    $$2\left( \cfrac { 1 }{ 2 } .\cfrac { dy }{ dx } +\log { 2 }  \right) -(0+2)=0$$
    $$\cfrac { dy }{ dx } =2-2\log { 2 } $$
  • Question 9
    1 / -0
    The value of a for which the function $$f(x)=\left\{\begin{matrix} \tan^{-1} a-3x^2, & 0<x<1 \\ -6x, & x\geq 1\end{matrix}\right.$$ has a maximum at $$x=1$$, is?
    Solution
    We have,
    $$\displaystyle f(x)=\left\{\begin {matrix} \tan^{-1} a-3x^2, & 0 < x < 1\\ -6x , & x\geq 1\end{matrix}\right.$$
    If $$f(x)$$ attains a maximum at $$x=1$$, then $$f'(1)$$ must exist and should be zero. This means that $$f(x)$$ must be continuous and differentiable at $$x=1$$.
    We observe that $$f(x)$$ will be continuous at $$x=1$$, if $$\tan^{-1}a=-3$$.
    But, (LHD at $$x=1$$)$$=$$(RHD at $$x=1$$)$$=-6\neq 0$$ for any value of $$a$$.
    Hence, there is no value of $$a$$ for which $$f(x)$$ has a minimum at $$x=1$$.
  • Question 10
    1 / -0
    If $$ y^x = 2^x , $$ then $$ \dfrac {dy}{dx} $$ is equal to :
    Solution
    Given, $$ y^x = 2^x $$
    On taking $$\log$$ on both sides, we get 
    $$ x \log y = x \log 2 $$
    On differentiating w.r.t. $$x,$$ we get
    $$ x\times \dfrac {1}{y} \times \dfrac {dy}{dx} + \log y = \log 2 $$
    $$ \Rightarrow \dfrac {dy}{dx} = \dfrac {y}{x} [ \log 2 - \log y ] $$
    $$ \Rightarrow \dfrac {dy}{dx}= \dfrac {y}{x} \left[ \log \dfrac{2}{y} \right] $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now