Given $$y=\dfrac{1}{2}(sin^{-1}x)^2$$.
We have to find $$(1-x^2)y_2-xy_1$$ where $$y_1,y_2$$ denote the first and second derivatives $$y$$ respectively.
$$y_1=\dfrac{d}{dx}\left(\dfrac{1}{2}(sin^{-1}x)^2\right)$$
$$=\dfrac{1}{2} \cdot \dfrac{d}{dx}\left(sin^{-1} x\right)^2$$
$$=\dfrac{1}{2} \cdot 2 sin^{-1}x \cdot \dfrac{1}{\sqrt{1-x^2}}$$
$$y_1=\dfrac{sin^{-1} x}{\sqrt{1-x^2}}$$
Now let us find $$y_2$$
$$y_2=\dfrac{d}{dx}y_1$$
$$=\dfrac{d}{dx}\left( \dfrac{sin^{-1}x}{\sqrt{1-x^2}}\right)$$
$$=\dfrac{\sqrt{1-x^2} \cdot \dfrac{d}{dx}(sin^{-1}x) - sin^{-1} x \cdot \dfrac{d}{dx} \left(\sqrt{1-x^2}\right)}{(\sqrt{1-x^2})^2}$$
$$=\dfrac{\sqrt{1-x^2} \cdot \dfrac{1}{\sqrt{1-x^2}} - sin^{-1} x \cdot \left(-\dfrac{x}{\sqrt{1-x^2}}\right)}{(\sqrt{1-x^2})^2}$$
$$=\dfrac{1+\dfrac{x sin^{-1}x}{\sqrt{1-x^2}}}{1-x^2}$$
$$\therefore y_2=\dfrac{\sqrt{1-x^2}+x sin^{-1}x}{(1-x^2)(\sqrt{1-x^2})}$$
Now we have to find $$(1-x^2)y_2-xy_1$$.
$$(1-x^2)y_2-xy_1=(1-x^2) \cdot \dfrac{\sqrt{1-x^2}+xsin^{-1}x}{(1-x^2)(\sqrt{1-x^2})}-x \cdot \dfrac{sin^{-1}x}{\sqrt{1-x^2}}$$
$$=\dfrac{\sqrt{1-x^2}+xsin^{-1}x}{\sqrt{1-x^2}}- \dfrac{xsin^{-1}x}{\sqrt{1-x^2}}$$
$$=1+\dfrac{xsin^{-1}x}{\sqrt{1-x^2}}- \dfrac{xsin^{-1}x}{\sqrt{1-x^2}}$$
$$\therefore (1-x^2)y_2-xy_1=1$$