Self Studies

Continuity and Differentiability Test - 23

Result Self Studies

Continuity and Differentiability Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y={ \left( \tan ^{ -1 }{ x }  \right)  }^{ 2 }$$ and $${ \left( { x }^{ 2 }+1 \right)  }^{ 2 }\dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } +2x\left( { x }^{ 2 }+1 \right) \dfrac { dy }{ dx } =k$$, then the value of $$k$$ is
    Solution
    $$y=(\text{tan}^{-1}x)^{2}$$
    $$\dfrac{d{y}}{d{x}}=\dfrac{2\text{tan}^{-1}x}{1+x^{2}}$$
    $$(1+x^{2})\dfrac{d{y}}{d{x}}=2\text{tan}^{-1}x$$
    $$(1+x^{2})\dfrac{d^{2}{y}}{d{x^{2}}}+2{x}\dfrac{d{y}}{d{x}}=2\dfrac{1}{1+x^{2}}$$
    $$(1+x^{2})^{2}\dfrac{d^{2}{y}}{d{x^{2}}}+2{x}(1+x^{2})\dfrac{d{y}}{d{x}}=2\implies k=2$$
  • Question 2
    1 / -0
    Which of the following  is not differentiable in the interval $$(-1,2)$$?
    Solution
    For $$x\in (-1,2)$$, $$\displaystyle\int\limits_{x}^{2x}f(x) dx$$ is differentiable  in $$(-1,2)$$ if $$f(x)$$ is continuous in $$(-1,2)$$. 
    For the given functions  $$f(x) =\log x$$ is not defined for $$x\leq 0$$ so it is not continuous in $$(-1,2)$$.
    So, option $$(A)$$ is not differentiable in $$(-1,2)$$.
    But remaining two functions are continuous in $$(-1,2)$$ hence option $$(C)$$ and $$(D)$$ are differentiable in $$(-1,2)$$.
  • Question 3
    1 / -0
    Let  $$f:(0,\infty ) \to R$$ be a differentiable function such that $$f'(x) = 2 - {{f(x)} \over x}$$ for all $$x \in (0,\infty )$$ and $$f(1) \ne 1$$
    Solution
    $$f'(x)=2-\dfrac{f(x)}{x}\implies x f'(x)+f(x)=2{x}$$
    $$d(x f(x))=2{x} d{x}$$
    Integrating on both sides
    $$x f(x)=x^{2}+c\implies f(x)=x+\dfrac{c}{x}$$
    $$f'(x)=1-\dfrac{c}{x^2}$$
    $$\displaystyle \lim _{x\to 0} f'\bigg(\dfrac{1}{x}\bigg)=\lim _{x\to 0} (1-c x^2)=1$$
    $$\displaystyle\lim _{x\to 0} x f\bigg(\dfrac{1}{x}\bigg)=\lim _{x\to 0} (1+x^2)=1$$
    $$\displaystyle\lim _{x\to 0} x^2 f'(x)=\lim_{x\to 0} (x^{2}-c)=-c$$
    $$AM\ge GM$$
    $$\implies |f(x)|\ge 2\sqrt{c}$$
  • Question 4
    1 / -0
    Let $$f(x)=\begin{cases}
    (x-1) \sin \left( \large{\frac{1}{x-1}}\right) \ &\mbox{if}& \ x \ne 1\\
    0, \ &\mbox{if}& \ x \ne 1
    \end{cases}$$.
    Then which one of the following is true?
    Solution
    $${f}'(x)=\sin\left ( \cfrac{1}{x-1} \right )+(x-1)\cos\left ( \cfrac{1}{x-1} \right )\left ( \cfrac{-1}{(x-1)^{2}} \right )$$
    $${f}'(0)=\sin(-1)+(-1)\cos(-1)(-1)$$
       $$=\cos1-\sin1$$
    As $$x\rightarrow 1 ,{f}'(1)\rightarrow \infty $$     $$\left ( \because \cfrac{1}{x-1}\rightarrow \infty  \right )$$
      $$\therefore f(x)$$ is differentiable at $$x=0$$, but not at $$x=1$$
  • Question 5
    1 / -0
    Let $$f(x)={ x }^{ 3 }-{ x }^{ 2 }+x+1$$ and $$g\left( x \right) =\begin{cases} max\{ f\left( t \right) ;0\le t\le x\} \quad ;\quad 0\le x\le 1 \\ 3-x\quad \quad \quad \quad \quad \quad \quad \quad   ;\quad 1<x\le 2 \end{cases}$$ then
    Solution
    $$f(x)=x^{3}-x^{2}+x+1$$
    $$g(x)=\begin{cases} max.(F(t):0\le t \le x)\ \ \ \ 0\le x\le 1 \\ 3-x; \ \ \ 1\le x\le 2 \end{cases}$$
    here $$F(0)=1, F(1)=2$$
    If $$F(x)$$ increasing in $$0$$ to $$1$$ then max will be $$f(t)$$
    $$F(t)=3x^{2}-2x+1$$
    $$0=9x^{2}-2x+1$$
    $$x=\dfrac{2\pm \sqrt{8}i}{6}$$
    clearly $$f x^{n}$$ is always increasing
    So $$g(x)=x^{3}-x^{2}+x+1, 0\le x\le 1$$
    $$g-x, 1\le x\le 1$$
    $$\displaystyle\lim_{x\rightarrow 1^{-}}g(x)=2, \lim_{x\rightarrow 1^{+}}g(x)=2$$
    $$\displaystyle\lim_{x\rightarrow 1}g(x)=2$$
    So clearly $$g(x)\rightarrow$$ continuous
    $$g(1)=2$$ at $$x=1$$
    clearly $$Fx^{n}$$ is deriable
  • Question 6
    1 / -0
    If $$x=a{ t }^{ 2 },y=2at$$, then $$\cfrac { dy }{ dx } =$$_____;$$t\neq 0$$
    Solution
    $$x=at^{2}$$
    Differentiating both sides with respect to t
    $$\dfrac{dx}{dt}=\dfrac{d}{dt}(at^{2})$$
    $$\dfrac{dx}{dt}=a\dfrac{d}{dt}(t^{2})$$
    $$\dfrac{dx}{dt}=2at$$  (1)
    $$y=2at$$
    Differentiating both sides with respect to t
    $$\dfrac{dy}{dt}=\dfrac{d}{dt}(2at)$$
    $$\dfrac{dy}{dt}=2a\dfrac{d}{dt}(t)$$
    $$\dfrac{dy}{dt}=2a$$   (2)
    Now
    $$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}$$
    From (1) and (2)
    $$\dfrac{dy}{dx}=\dfrac{2a}{2at}=\dfrac{1}{t}$$
  • Question 7
    1 / -0
    If the function $$f(x)=\dfrac{e^{x^{2}}-\cos x}{x^{2}}$$ for $$x \neq 0$$ continuous at $$x=0$$ then $$f(0)=$$
    Solution
    Here , function is continuous ,

    So, left limit and right limit boh are equal and equals to the value of  $$f(x)$$ at $$x=0$$

    Therefore

    $$\displaystyle \lim_{x\rightarrow0} f(x)=\lim_{x\rightarrow0} \dfrac{e^{x^2}-cosx}{x^2}$$

    Solving limit by derivative approach,

    =>  $$\displaystyle \lim_{x\rightarrow0} f(x)=\lim_{x\rightarrow0} \dfrac{e^{x^2}.2x+sinx}{2x}$$


    =>   $$\displaystyle \lim_{x\rightarrow0} f(x)=\lim_{x\rightarrow0} \dfrac{2e^{x^2}+e^{x^2}.x^2+cosx}{2x}$$

    Putting $$x=0$$, we get

    =>   $$f(0)=\dfrac{2+0+1}{2}=\dfrac{3}{2}$$
  • Question 8
    1 / -0

    The function $$f : R /{0} \rightarrow R$$ given by $$f(x) =
    \dfrac{1}{x} - \dfrac{2}{e^{2x} -1}$$ can be made continuous at $$x=0$$ by
    defining $$f(0)$$ as 

    Solution
    Given $$f(x)=\dfrac{1}{x}-\dfrac{2}{e^{2x}-1}$$

    For $$f(x)$$ to be continuous at $$x=0$$ , its limit should exists at $$x=0$$ and must be finite.

    Hence
    $$f(0)=\lim\limits_{x\to0}\dfrac{e^{2x}-1-2x}{x(e^{2x}-1)}$$

    $$=\lim\limits_{x\to0}\dfrac{1+2x+\frac{4x^2}{2!}+\frac{8x^3}{3!}.....-1-2x}{x+2x^2+\frac{4x^3}{2!}.....-x}=\dfrac{\frac{4x^2}{2!}}{2x^2}=1$$......[neglecting higher power of $$x$$]  
  • Question 9
    1 / -0
    The function $$f(x) =
    \ sin^{-1} (\ cosx)$$ is 
    Solution
    We know that the cosine function, is nothing more than the sin $$\dfrac{\pi}{2}$$ radians out of phase, as proved below,

    $$\cos(\theta-\dfrac{\pi}{2})=\cos(\theta)\cos(-\dfrac{\pi}{2})-\sin(\theta)\sin(-\dfrac{\pi}{2})$$

    $$\cos(\theta-\dfrac{\pi}{2})=\cos(\theta).0-(-\sin(\theta)\sin(\dfrac{\pi}{2}))$$

    $$\cos(\theta-\dfrac{\pi}{2})=\cos(\theta).1=\sin(\theta)$$

    So, it $$f(x)=sin^{-1}(cosx)$$ is continuous at $$x=0$$


    So we can say that the since function, 90 degree ahead, is the cousin function.

    $$arc\sin(\cos(x))=arcsin(sin(x+\dfrac{\pi}{2}))$$

    Using the property of inverse that $$f^{-1}(f(x))=x$$, we have

    $$arc\sin(\cos(x))=x+\dfrac{\pi}{2}$$
  • Question 10
    1 / -0
    Let $$f(x) = \begin{cases} x & x<1 \\ 2-x & 1 \leq x \leq 2 \\ -2+3x-x^2 & x>2 \end{cases}$$
     then $$f(x)$$ is 
    Solution
    Differentiability check at 1
    $$\lim _{ h\rightarrow 0 }{ \cfrac { f(1+h)-f(1) }{ h }  } \\ \Rightarrow \cfrac { 2-(1+h)-(2-1) }{ h } \\ \Rightarrow \cfrac { -h }{ h } =-1\\ \lim _{ h\rightarrow 0 }{ \cfrac { f(1)-f(1-h) }{ h }  } \\ \Rightarrow \cfrac { 1-(1-h) }{ h } \\ \Rightarrow \cfrac { h }{ h } =1\\ $$
    Not differentiable at 1.
    Differentiability check at 2
    $$\lim _{ h\rightarrow 0 }{ \cfrac { f(2+h)-f(2) }{ h }  } \\ \Rightarrow \cfrac { (-2+3(2+h)-{ (2+h) }^{ 2 }) }{ h } -0\\ \Rightarrow \cfrac { -2+6+3h-4-{ h }^{ 2 }-4h }{ h } \\ \Rightarrow \cfrac { -{ h }^{ 2 }-h }{ h } \\ \Rightarrow \cfrac { -h(h+1) }{ h } =-1\\ \lim _{ h\rightarrow 0 }{ \cfrac { f(2)-f(2-h) }{ h }  } \\ \Rightarrow \cfrac { 0-(2-(2-h)) }{ h } \\ \Rightarrow \cfrac { -2+2-h }{ h } \Rightarrow -1$$
    Differentiable at 2.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now