Self Studies

Continuity and ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$x=a\sec^{2}\theta$$, $$y=a\tan^{3}\theta$$ then $$\dfrac {d^{3}y}{dx^{3}}$$

  • Question 2
    1 / -0

    The value of k which makes $$f(x)=\left\{\begin{matrix} \sin\dfrac{1}{x}, x\neq 0\\ k, x=0\end{matrix}\right.$$ continuous at $$x=0$$ is?

  • Question 3
    1 / -0

    If $$x=\cos ec \theta-\sin \theta,y=\cos ec^{n}\theta-\sin^{n}\theta$$ then $$(x^{2}+4)\left(\dfrac {dy} {dx}\right)^{2}-n^{2}y^{2}=$$ 

  • Question 4
    1 / -0

    Let $$f(x) = \underset{0}{\overset{x}{\int}} |2t - 3| dt$$, then $$f$$ is 

  • Question 5
    1 / -0

    Let $$f(x) = \left\{\begin{matrix}x &x < 1 \\ 2 - x & 1 \leq x \leq 2\\ -2 + 3x - x^{2} & x > 2\end{matrix}\right.$$ then $$f(x)$$ is

  • Question 6
    1 / -0

    Directions For Questions

    Let two functions $$f\left( x \right) =\begin{cases} { e }^{ x }+a; & x\ge 0 \\ { e }^{ -x }+b; & x<0 \end{cases}$$ & $$g\left( x \right) =\begin{cases} c\sin { x } ; & x\ge 0 \\ d+\cos { x } ; & x<0 \end{cases}$$ are such that $$f(x)+g(x)$$ & $$f(x).g(x)$$ both are differentiable at $$x=0$$.
    On  the basis of above information, answer the following questions :

    ...view full instructions

    Range of function $$f(x)-g(x)$$ in [-$$\pi, \pi$$] is-

  • Question 7
    1 / -0

    Directions For Questions

    Let two functions $$f\left( x \right) =\begin{cases} { e }^{ x }+a; & x\ge 0 \\ { e }^{ -x }+b; & x<0 \end{cases}$$ & $$g\left( x \right) =\begin{cases} c\sin { x } ; & x\ge 0 \\ d+\cos { x } ; & x<0 \end{cases}$$ are such that $$f(x)+g(x)$$ & $$f(x).g(x)$$ both are differentiable at $$x=0$$.
    On  the basis of above information, answer the following quaestions :

    ...view full instructions

    Which of the following is NOT CORRECT-

  • Question 8
    1 / -0

    $$\sqrt{1+\left(\dfrac{d^2y}{dx^2}\right)^3}=\left(2+\dfrac{dy}{dx}\right)^{1/3}$$

    Find it's order and degree.

  • Question 9
    1 / -0

    If $$x$$ $$sin$$ $$y$$$$=3 sin y$$ $$+$$ $$4 cos y$$, then $$\frac { dy }{ dx } =$$

  • Question 10
    1 / -0

    Directions For Questions

    Let two functions $$f\left( x \right) =\begin{cases} { e }^{ x }+a; & x\ge 0 \\ { e }^{ -x }+b; & x<0 \end{cases}$$ & $$g\left( x \right) =\begin{cases} c\sin { x } ; & x\ge 0 \\ d+\cos { x } ; & x<0 \end{cases}$$ are such that $$f(x)+g(x)$$ & $$f(x).g(x)$$ both are differentiable at $$x=0$$.
    On  the basis of above information, answer the following quaestions :

    ...view full instructions

    Function $$f(x)-g(x)$$ is-

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now