Self Studies

Continuity and Differentiability Test - 27

Result Self Studies

Continuity and Differentiability Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Differentiate $$\log(1+x^{2})$$ with respect $$\tan^{-1}x$$.
    Solution
    Let $$y=\log(1+x^{2})$$
    $$y=\tan^{-1}(x)$$
    To find $$\dfrac{dy}{dz}$$
    first we find $$\dfrac{dy}{dx}=\dfrac{d}{dx}(\log(1+x^{2})=\dfrac{2x}{1+x^{2}}$$
    Next we find 
    $$\dfrac{dz}{dx}=\dfrac{d}{dx}(\tan^{-1}(x))=\dfrac{1}{1+x^{2}}$$
    Now $$\dfrac{dy}{dz}=\dfrac{\dfrac{dy}{dx}}{\dfrac{dz}{dx}}=\dfrac{\dfrac{2x}{1+x^{2}}}{\dfrac{1}{1+x^{2}}}=2x$$














  • Question 2
    1 / -0
    An angle $$\theta$$ through which a pulley turns with time $$'t'$$ is completed by $$\theta = t^{2} + 3t - 5\ sq. cms/ min$$. Then the angular velocity for $$t = 5\ sec$$.
    Solution

  • Question 3
    1 / -0
    If $$f\left( x \right) = \left( {x - a} \right)g\left( x \right)$$ and $$g\left( x \right)$$ is continuous $$x = a$$ then $${f^{'}}\left( 1 \right) = $$
    Solution
    From given identity ,
    $$f(a)=0$$
    $$f(a+h)=(a+h-a)g(a+h)=hg(a+h)$$
    $$f(a-h)=(a-h-a)g(a-h)=-hg(a-h)$$

    $$f'(a)= \displaystyle \lim_{h\to 0} \dfrac{f(a+h)-f(a)}{h}=\lim_{h\to 0}\dfrac{hg(a+h)-f(a)}{h}$$ .......(RHD,Similiarly LHD can be worked out )
    Since $$g(x)$$ is continuous at $$x=a$$ , we can write above equation as
    $$f'(a)=\displaystyle \lim_{h\to 0} \dfrac{f(a+h)-f(a)}{h}=\lim_{h\to 0}\dfrac{hg(a)-f(a)}{h}=\lim_{h\to 0}\dfrac{hg(a)}{h}=g(a)$$

    So finally we arrive at $$f'(a)=g(a)$$
    So $$f'(1)=g(1)$$
  • Question 4
    1 / -0
    If the following function is continuous at $$x=0$$, find the value of $$k$$:
    $$f\left( x \right) = \left\{ {\begin{array}{ccccccccccccccc}{\dfrac{{\sin \frac{{3x}}{2}}}{x}}&{,x \ne 0}\\k&{,x = 0}\end{array}} \right.$$
    Solution

  • Question 5
    1 / -0
    Let $$g\left(x\right)=\dfrac{f\left(x\right)}{x+1}$$ where $$f\left(x\right) $$ is differentiable on  $$\left[0,5\right]$$ such that $$f\left(0\right)=4,f\left(5\right)=-1$$. There exists $$c\in \left(0,5\right)$$ such that $$g^{ ' }\left( c \right) $$ is ?
    Solution
    $$g\left( x \right) =\cfrac { f\left( x \right)  }{ x+1 } $$
    $$\Rightarrow g(0)=\cfrac { 4 }{ 1 } =4;g\left( 5 \right)=\cfrac { -1 }{ 6 } $$
    By Lagrange's mean value theorem,
    $$g'\left( c \right)=\cfrac { g\left( 5 \right)-g\left( 0 \right) }{ 5-0 } =\cfrac { \cfrac { -1 }{ 6 } -4 }{ 5 } $$
    $$=\cfrac { -25 }{ 30 } =\cfrac { -5 }{ 6 } $$
  • Question 6
    1 / -0
    Let $$f(x)=3x^{10}-7x^8+5x^6-21x^3+3x^2-7$$.
    The value of $$\lim _{ h\rightarrow 0 }{ \dfrac { f\left( 1-h \right) -f\left( 1 \right)  }{ { h }^{ 3 }+3h }  } $$ is
  • Question 7
    1 / -0
    If $$y=y(x)$$ and it follows the relation $$e^{xy^{2}}+y\cos(x^{2})=5$$ then $$y'(0)$$ is equal to
    Solution

  • Question 8
    1 / -0
    A function $$f:R\rightarrow R$$ is such that $$f(1)=3$$ and $$f'(1)=6$$. Then $$\rightarrow { \displaystyle \lim _{ x\rightarrow 0 }{ \left[ \dfrac { f\left( 1+x \right)  }{ f\left( 1 \right)  }  \right]  }  }^{ 1/x }=$$ ?
    Solution

  • Question 9
    1 / -0
    If $$f$$ is a real valued differentiable function satisfying $$\left| f\left( x \right) -f\left( y \right)  \right| \le { \left( x-y \right)  }^{ 2 },x,y\epsilon R\ and f\left( 0 \right) ,\ then f\left( 1 \right)$$ equals ?
    Solution

  • Question 10
    1 / -0
    Solve:
    $$\dfrac { d } { d x } \tan ^ { - 1 } ( \sec x + \tan x )$$
    Solution

    $$\dfrac d{dx} \tan ^{-1} (\sec x+\tan x)$$

    $$\implies \dfrac 1{1+(\sec x+\tan x)^2}\dfrac d{dx}(\sec x+\tan x)$$

    $$\implies \dfrac 1{1+(\sec x+\tan x)^2}(\sec x\tan x+\sec ^2x)$$

    $$\implies \dfrac 1{1+\sec ^2 x+\tan ^2x +2\sec x\tan x}(\sec x\tan x+\sec ^2x)$$

    $$\implies \dfrac 1{2\sec^2x+2\sec x \tan x}(\sec x\tan x+\sec ^2x)$$

    $$\implies \dfrac 12 $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now