Self Studies

Continuity and ...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$f$$ differentiable at $$x=0$$ and $$f'\left( 0 \right) = 1$$. Then $$\mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( h \right) - f\left( { - 2h} \right)}}{h} = $$=

  • Question 2
    1 / -0

    Let $$f(x)$$ be differentiable function such that $$f\left(\dfrac{x+y}{1-xy}\right)=f(x)+f(y) \forall x$$ and $$y$$. If $$\underset { x\rightarrow 0 }{ lt } \dfrac { f\left( x \right)  }{ x } =\dfrac { 1 }{ 3 }$$ then $$f(1)$$ equals 

  • Question 3
    1 / -0

    If $$f (x)$$ is differentiable everywhere, then:

  • Question 4
    1 / -0

    If y = sin $$^{-1} (x. \sqrt{1-x}+ \sqrt{x}\sqrt{1-x^2})$$, then $$\dfrac{dy}{dx} =$$

  • Question 5
    1 / -0

    If $$f(x)=x^{n}\sin \dfrac {1}{x},f(0)=0$$

  • Question 6
    1 / -0

    If $$x=\dfrac{e^t+e^{-t}}{2}, y=\dfrac{e^t-e^{-t}}{2}$$, then $$\dfrac{dx}{dy}=$$

  • Question 7
    1 / -0

    If $$y=a^{{a}^{{x}}}$$, then $$\dfrac {dy}{dx}=$$

  • Question 8
    1 / -0

    If f (x + y) = 2 f(x) f(y) all x, y  $$\in$$ R where f' (0) = 3 and f (4) =2, then f'(4) is equal to 

  • Question 9
    1 / -0

    If $$(2+\sin x)\dfrac{dy}{dx}+(y+1)\cos x=0$$ and $$y(0)=1$$, then $$y\left(\dfrac{\pi}{2}\right)$$ is equal to?

  • Question 10
    1 / -0

    If $$(\cos x)^{y}=(\sin y)^{x}$$, then $$\dfrac{dy}{dx}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now