Self Studies

Continuity and Differentiability Test - 34

Result Self Studies

Continuity and Differentiability Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The function given by y=$$ \left | x-1 \right | $$ is differentiable function and $$ f(1/n) $$ = 0 $$ \forall n\geq 1 $$ and n\epsilon I $$, then
    Solution
    Given that f(x) is a continuous and differentiable function and$$f(\dfrac{1}{x})=0,x=n,n\epsilon l$$ 
    $$\therefore f(0^{+})=f(\dfrac{1}{\infty })=0$$ 
    since R.H.L=0,$$\therefore f(0)=0$$for f(x)to be continuous Alsio f'(0)
    $$=\underset{h\rightarrow 0}{lim}\dfrac{f(h)-f(0)}{h-0}=\underset{h\rightarrow 0}{lim}\dfrac{f(h)}{h}=0$$
    $$[Usingf(0)=0][\because f(0^{+})=0]$$Hence f(0)=0 f(0) 
  • Question 2
    1 / -0
     The largest value of c such that there exists a differential function $$ h(x) for  -c < x < c $$ that is a solution of $$ y_1 = 1 +y^2 $$ with h(0) = 0 is 
    Solution

  • Question 3
    1 / -0
    If $$y=\sin^{-1}\left\{\dfrac{\sqrt{1+x}+\sqrt{1-x}}{2}\right\}$$ then $$\dfrac{dy}{dx}=$$
    Solution

  • Question 4
    1 / -0
    If $$y=\tan^{-1}\left\{\dfrac{\sqrt{1+x^{2}}-1}{x}\right\}$$ then $$\dfrac{dy}{dx}=?$$
    Solution
    $$y=\tan^{-1}\left\{\dfrac{\sqrt{1+x^2}-1}{x}\right\}$$
    Let $$x=\tan\theta$$
    $$y=\tan^{-1}\left\{\dfrac{\sqrt{1+\tan^2\theta}-1}{\tan\theta}\right\}$$

    $$y=\tan^{-1}\left(\dfrac{\sec\theta-1}{\tan\theta}\right)$$

    $$y=\tan^{-1}\left(\dfrac{\dfrac{1}{\cos\theta}-1}{\dfrac{\sin\theta}{\cos\theta}}\right)$$

    $$y=\tan^{-1}\left(\dfrac{1-\cos\theta}{\sin\theta}\right)$$

    $$y=\tan^{-1}\left(\dfrac{2\sin^2\dfrac{\theta}{2}}{2\sin\dfrac{\theta}{2}\cos\dfrac{\theta}{2}}\right)$$

    $$y=\tan^{-1}\left(\dfrac{\sin\dfrac{\theta}{2}}{\cos\dfrac{\theta}{2}}\right)$$

    $$y=\tan^{-1}\left(\tan\dfrac{\theta}{2}\right)$$

    $$y=\dfrac{\theta}{2}$$

    Substituting $$\theta=\tan^{-1}x$$
    $$y=\dfrac{\tan^{-1}x}{2}$$

    $$\dfrac{dy}{dx}=\dfrac{d}{dx}\dfrac{\tan^{-1}x}{2}$$

    $$\therefore$$  $$\dfrac{dy}{dx}=\dfrac{1}{2(1+x^2)}$$
  • Question 5
    1 / -0
    If $$y=\sec^{-1}\left(\dfrac{1}{2x^{2}-1}\right)$$ then $$\dfrac{dy}{dx}=?$$
    Solution
    $$y=\sec^{-1}\left(\dfrac{1}{2x^{2}-1}\right)$$

    Put $$x=\cos\theta$$

    As we know, $$\cos 2\theta=2\cos^2 \theta-1$$

    Then $$y=\sec^{-1}\left(\dfrac{1}{2\cos^{2}\theta-1}\right)=\sec^{-1}(\sec 2\theta)=2\theta=2\cos^{-1}x$$.

    $$\therefore \dfrac{dy}{dx}=\dfrac{-2}{\sqrt{1-x^{2}}}$$
  • Question 6
    1 / -0
    Which of the following function is thrice differentiable at x=0?
  • Question 7
    1 / -0
    If $$y=\sec^{-1}\left(\dfrac{x^{2}+1}{x^{2}-1}\right)$$ then $$\dfrac{dy}{dx}=?$$
    Solution
    $$y=\sec^{-1}\left(\dfrac{x^{2}+1}{x^{2}-1}\right)$$

    Put $$x=\cot\theta$$. 

    As we know, $$\cos 2\theta=\dfrac{1-\tan^2\theta}{1+\tan^2\theta}$$

    Then $$y=\sec^{-1}\left(\dfrac{1+\tan^{2}\theta}{1-\tan^{2}\theta}\right)=\sec^{-1}\left(\dfrac{1}{\cos 2\theta}\right)=\sec^{-1}(\sec 2\theta)=2\theta=2\cot^{-1}x$$.

    $$\therefore \dfrac{dy}{dx}=\dfrac{-2}{1+x^2}$$
  • Question 8
    1 / -0
     If $$y=\tan ^{-1} \sqrt{\dfrac{x+1}{x-1}}, $$ then $$ \dfrac{d y}{d x} $$ is
    Solution
    Let $$ x=\sec \theta $$

    $$\text { Then } y=\tan ^{-1} \sqrt{\dfrac{\sec \theta+1}{\sec \theta-1}} $$

    $$\quad=\tan ^{-1} \sqrt{\dfrac{1+\cos \theta}{1-\cos \theta}}=\tan ^{-1}\left(\cot \dfrac{\theta}{2}\right)$$

    $$\Rightarrow y=\tan ^{-1}\left\{\tan \left(\dfrac{\pi}{2}-\frac{\theta}{2}\right)\right\}=\dfrac{\pi}{2}-\dfrac{1}{2} \sec ^{-1} x$$

    $$\Rightarrow \dfrac{d y}{d x}=-\dfrac{1}{2} \times \dfrac{1}{|x| \sqrt{x^{2}-1}}$$
  • Question 9
    1 / -0

    Directions For Questions

    If $$\phi (x)$$ is a differentialble real valued function satisfying $$\phi (x)+2\phi (x) \le 1$$, then it can be adjusted as $$e^{2x}\phi' (x) +2e${2x}\phi (x) \ge e^{2x}$$ or $$\dfrac {d}{dx}\left(e^{2x}\phi (x)-\dfrac {e^{2x}}{2}\right)\ge 0$$ or $$\dfrac {d}{dx}e^{2x} \left(\phi (x)-\dfrac {1}{2}\right)\ge 0$$.
    Here $$e^{2x}$$ is called integration factor which helps in creating single differential coefficient as shown above. Answer the following questions:

    ...view full instructions

    If $$P(1)=0$$ and $$\dfrac {dP(x)}{dx} > P(x)$$ for all $$x \ge 1$$, then
    Solution
    $$\dfrac {dP(x)}{dx} > P(x)$$
    $$\Rightarrow \ e^{-x}\dfrac {dP(x)}{dx}-e^{-x}P(x) > 0$$
    $$\Rightarrow \dfrac {d}{dx}(P(x)e^{-x}) > 0$$
    $$\Rightarrow P(x)e^{-x}$$ is an increasing function.
    $$\Rightarrow P(x)e^{-x} > P(1)e^{-1} \forall a \ge 1$$
    $$\Rightarrow P(x) e^{-x} > 0 \forall x > 1\Rightarrow P(x) > 0 \forall x > 1$$.
  • Question 10
    1 / -0
    The function $$ f(x)=\dfrac{x}{1+\left | x \right |} $$ is differentiable 
    Solution
    Thus $$f(x)$$ is differentiable at $$x=0$$
    $$f(x)=\dfrac{x}{1+\left | x \right |}$$is everywhere differentiable 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now