Self Studies

Continuity and Differentiability Test - 35

Result Self Studies

Continuity and Differentiability Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Directions For Questions

    If $$\phi (x)$$ is a differentialble real valued function satisfying $$\phi (x)+2\phi (x) \le 1$$, then it can be adjusted as $$e^{2x}\phi' (x) +2e${2x}\phi (x) \ge e^{2x}$$ or $$\dfrac {d}{dx}\left(e^{2x}\phi (x)-\dfrac {e^{2x}}{2}\right)\ge 0$$ or $$\dfrac {d}{dx}e^{2x} \left(\phi (x)-\dfrac {1}{2}\right)\ge 0$$.
    Here $$e^{2x}$$ is called integration factor which helps in creating single differential coefficient as shown above. Answer the following questions:

    ...view full instructions

    If $$H(x_0)=0$$ for some $$x=x_0$$ and $$\dfrac {d}{dx}H(x) > 2cxH(x)$$ for all $$x \le x_0$$, where $$c > 0$$, then
    Solution
    Given that $$\dfrac {d}{dx}H(x) > 2cxH(x)$$
    $$\Rightarrow \ e^{-cx^2}\dfrac {d}{dx}H(x)-e^{-cx^2}2cxH(x) > 0$$
    $$\Rightarrow \ \dfrac {d}{dx}(H(x)e^{-cx^2}) > 0$$
    $$\Rightarrow \ H(x)e^{-cx^2} > 0$$ is an increasing function.
    But $$H(x_0)=0$$ and $$e^{-cx^2}$$ is always positive.
    $$\Rightarrow \ H(x) > 0$$ for all $$x > x_0$$
    $$\Rightarrow \ H(x)$$ cannot be zero for any $$x > x_0$$.
  • Question 2
    1 / -0
    Given a function $$f:[0,4] \rightarrow \mathrm{R}$$ is differentiable, then for $$\displaystyle \operatorname{some} \alpha, \beta \in(0,2), \int_{0}^{4} f(t) d t$$ equals to
    Solution
    $$\displaystyle I=\int_{0}^{4} f(t) dt$$
    Put $$t=x^2$$

    $$\Rightarrow d t=2 x dx$$

    $$\displaystyle \therefore I=2 \int_{0}^{2} x f\left(x^{2}\right) dx$$

    From Lagrange's Mean Value Theorem
    $$\dfrac{\displaystyle \int_{0}^{2} 2 x f\left(x^{2}\right) d x-\int_{0}^{0} 2 x f\left(x^{2}\right) d x}{2-0}=2 y f\left(y^{2}\right)$$

    $$\Rightarrow \displaystyle \int_{0}^{2} 2 x f\left(x^{2}\right) d x=2 \times 2 y f\left(y^{2}\right) \\$$

    $$=2\left\{\dfrac{2 \alpha f\left(\alpha^{2}\right)+2 \beta f\left(\beta^{2}\right)}{2}\right\}\\$$
    (where $$0<\beta<y<\alpha<2$$, and using intermediate Mean Value Theorem.)
  • Question 3
    1 / -0
    $$ f(x)=x^{2}+x g^{\prime}(1)+g^{\prime \prime}(2) $$ and $$ g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x) $$
    The value of $$ f(3) $$ is
    Solution
    $$ f(x)=x^{2}+x g^{\prime}(1)+g^{\prime \prime}(2) $$ and $$ g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x) $$

    $$\text { Here put } g^{\prime}(1)=a, g^{\prime \prime}(2)=b \quad\quad\quad(1)$$

    $$\text { Then } f(x)=x^{2}+a x+b, f(1)=1+a+b \Rightarrow f^{\prime}(x)=2 x+a$$

    $$\quad f^{\prime \prime}(x)=2 $$

    $$\therefore g(x)=(1+a+b) x^{2}+(2 x+a) x+2=x^{2}(3+a+b)+a x\quad+2$$

    $$\Rightarrow g^{\prime}(x)=2 x(3+a+b)+a \text { and } g^{\prime \prime}(x)=2(3+a+b)$$

    $$\text { Hence, } g^{\prime}(1)=2(3+a+b)+a \quad\quad\quad(2)$$

    $$g^{\prime \prime} (2)=2(3+a+b)\quad\quad\quad(3)$$

    From (1),(2) and (3) we have 

    $$ a=2(3+a+b)+a $$

    $$\text { and } b=2(3+a+b) $$

    $$\Rightarrow 3+a+b=0 \text { and } b+2 a+6=0$$

    Hence, $$ b=0 $$ and $$ a=-3 . $$ So, $$ f(x)=x^{2}-3 x $$ and $$ g(x)=-3 x+2 $$

    $$ f(x)=x^{2}-3 x \Rightarrow f(3)=9-9=0 $$
  • Question 4
    1 / -0
    If f(x) = $$\displaystyle \int_{0}^{x}(f(t))^2 dt f:R→R$$ be differentiable function and f(g(x)) is differentiable function at x=a, then
    Solution
    Here, $$ f'(x)=(f(x))^2>0;\dfrac{d}{dx} f(g(x)) |_{x=a} $$
    $$=f'(g(x))\displaystyle \lim_{x→a}\dfrac{g(x)-g(a)}{x-a}$$
    It implies that g(x) must be differentiable at x=a.
  • Question 5
    1 / -0

    Directions For Questions

    Let $$f: R \rightarrow R$$ be a differentiable function such that $$f(x)=x^{2}+\int_{0}^{x} e^{-t} f(x-t) d t$$

    ...view full instructions

    $$y=f(x)$$ is
    Solution
    $$\begin{aligned}f(x)=& x^{2}+\int_{0}^{x} e^{-t} f(x-t) d t \\=& x^{2}+\int_{0}^{x} e^{-(x-t)} f(x-(x-t)) d t \\&=x^{2}+e^{-x} \int_{0}^{x} e^{t} f(t) d t\end{aligned}$$
    Differentiating w.r.t. $$x,$$ we get
    $$\begin{aligned}\Rightarrow f^{\prime}(x)=& 2 x-e^{-x} \int_{0}^{x} e^{t} f(t) d t+e^{-x} \cdot e^{x} f(x) \\&=2 x-e^{-x} \int_{0}^{x} e^{t} f(t) d t+f(x)\end{aligned}$$
    $$\Rightarrow f^{\prime}(x)=2 x+x^{2} \\$$
    $$\Rightarrow f(x)=\dfrac{x^{3}}{3}+x^{2}+c\\$$
    Also $$f(0)=0\\$$ [using equation from equation]
    $$\Rightarrow f(x)=\dfrac{x^{3}}{3}+x^{2} \\$$
    $$\Rightarrow f^{\prime}(x)=x^{2}+2 x\\$$
    $$\Rightarrow f^{\prime}(x)=0$$ has real roots, hence $$f^{\prime}(x)$$ is non-monotonic
    Hence, $$f(x)$$ is many-one, but range is $$R$$, hence surjective.
  • Question 6
    1 / -0
    If $$f:R \rightarrow (0, \infty)$$ be a differentiable function $$f(x)$$ satisfying $$f(x+ y) - f(x - y) = f(x) \{ f(y) - f(y) - y \}, \forall x, y \epsilon R, (f(y) \neq f(-y)$$ for all $$y \epsilon R)$$ and $$f' (0) = 2010$$.
    Now answer the following questions

    Which of the following is true for $$f(x)$$
    Solution
    Here, $$2 f' (x) = \displaystyle \lim_{h \rightarrow 0} \left ( \frac{f(x + h) - f(x)}{h} + \frac{f(x  x - h) - f(x)}{-h} \right )$$
                           $$ = \displaystyle \lim_{h \rightarrow 0} \left ( \frac{f(x + h) - f(x - h)}{h}  \right )$$                   (i)
    $$\therefore  2f'(0) \displaystyle \lim_{h \rightarrow 0} \left ( \frac{f(h) - f (-h)}{h} + \frac{f(-h) - f(0)}{-h} \right )$$
                            $$ = \displaystyle \lim_{h \rightarrow 0}\frac{f(h) - f(-h)}{h}$$ ... ..(ii)
    Now by given relation, we have
    $$f(h) - f(-h) = \frac{f(x + h) - f(x - h)}{-h}$$ and $$f(0) = 1$$
    From Eqs. (i) and (ii), we have $$\frac{f'(x)}{f(x)} = 2010$$
    $$\Rightarrow$$            $$f(x) = e^{2010e}, f(0) = 1$$
    $$\therefore   \{ f(x) \}$$ is non-periodic.
  • Question 7
    1 / -0
    If $$u=\sin^{-1}\Bigg(\dfrac{2x}{1+x^2}\Bigg)$$ and $$v=\tan^{-1}\Bigg(\dfrac{2x}{1-x^2}\Bigg)$$, then $$\dfrac{du}{dv}$$ is
    Solution
    d
  • Question 8
    1 / -0
    The function $$f(x)=\Bigg\{\dfrac{\sin x}{x}+\cos x,if\,x\neq 0\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,k,if\,x=0$$  is continuous at $$x=0$$,then the value of k is
    Solution
    B
  • Question 9
    1 / -0
    The function $$f(x)=|x|+|x-1|$$ is
    Solution
    a
  • Question 10
    1 / -0
    If $$f(x) = \sin^{-1} \left ( \frac{4^{x + \frac{1}{2}}}{1 + 2^{4x}} \right )$$, which of the following is not the derivative of f(x)?
    Solution
    Put $$4^x = \tan \theta$$. Then $$\theta = \tan^{-1}(4^x)$$
    $$\therefore f(x) = \sin^{-1} \left ( \frac{2 \tan \theta}{1 + \tan \theta}  \right )$$
    $$= \sin^{-1} (\sin 2 \theta)$$
    $$= 2 \theta$$
    $$= 2 \tan^{-1} (4^x)$$
    $$\therefore f'(x) = 2 \times \frac{1}{1 + (4^x)^2} \times 4^x \log 4$$
    $$= \frac{2.4^x \cdot \log 4}{1 + 4^{2x}}$$    ....(a)
    $$= \frac{2.4^x \cdot 2 \log 2}{1 + 4^{2x}}$$
    $$= \frac{4^{x + 1} \cdot \log 2}{1 + 4^{2x}}$$     ...(b)
    $$= \frac{(2^{2})^{x + 1} \cdot \log 2}{1 + 2^{4x}}$$
    $$ = \frac{2^{2^(x + 1)} \cdot \log 2}{1 + 2^{4x}}$$   ....(d)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now