Self Studies

Continuity and Differentiability Test - 36

Result Self Studies

Continuity and Differentiability Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y \tan^{-1} \left ( \sqrt{\frac{a - x}{a + x}} \right )$$, where -a < x < a, then $$\frac{dy}{dx} =$$.....
    Solution
    Put $$x = a \cos \theta$$
  • Question 2
    1 / -0
    If $$y = \tan^{-1} \left ( \frac{x}{1 + \sqrt{1 - x^2}} \right ) + \sin \left [ 2 \tan^{-1} \left ( \sqrt{\frac{1 - x}{1 + x}} \right )  \right ]$$ then $$\frac{dy}{dx} = $$...........
    Solution
    $$y = \tan^{-1} \left ( \frac{x}{1 + \sqrt{1 - x^2}} \right ) + \sin \left [ 2 \tan^{-1} \left ( \sqrt{\frac{1 - x}{1 + x}} \right )  \right ]$$
    Put $$x = \cos \theta.$$ Then $$\theta = \cos^{-1} x$$
    $$\therefore y = \tan^{-1} \left ( \frac{\cos \theta}{1 + \sqrt{1 - \cos \theta^2}} \right ) + \sin \left [ 2 \tan^{-1} \left ( \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \right )  \right ]$$
    $$= \tan^{-1} \left ( \frac{\cos \theta}{1 + 1 + \tan \theta} \right ) + \sin \left [ 2 \tan^{-1} \left ( \sqrt{\frac{2 \sin^2 (\frac{\theta}{2})}{2 \cos^2(\frac{\theta}{2})}} \right )  \right ]$$
    $$= \tan^{-1} \left [ \frac{\sin (\frac{\pi}{2} - \theta)}{1 + \cos (\frac{\pi}{2} - \theta)}   \right ] + \sin [2 \tan^{-1} (\tan \frac{\theta}{2})]$$
    $$= \tan^{-1} \left [ \frac{2 \sin (\frac{\pi}{4} - \frac{\theta}{2}) \cdot \cos (\frac{\pi}{4} - \frac{\theta}{2})}{2 \cos^2 (\frac{\pi}{4} - \frac{\theta}{2})}  \right ] + \sin (2 \times \frac{\theta}{2})$$
    $$= \tan^{-1} [\tan (\frac{\pi}{4} - \frac{\theta}{2})] + \sin \theta$$
    $$= \frac{\pi}{4} - \frac{\theta}{2} + \sqrt{1 - \cos^2 \theta}$$
    $$= \frac{\pi}{4} - \frac{2}{2} \cos^{-1} x + \sqrt{1 - x^2}$$
    $$\frac{dy}{dx} = 0 - \frac{1}{2} \times \frac{1}{\sqrt{1 - x^2}} + \frac{1}{2 \sqrt{1 - x^2}} \times (-2x)$$
    $$= \frac{1}{2 \sqrt{1 - x^2}} - \frac{x}{\sqrt{1 - x^2}}$$
    $$= \frac{1 - 2x}{2 \sqrt{1 - x^2}}$$
  • Question 3
    1 / -0
    If $$y = \sin(2 \sin^{-1} x)$$, then dx = .......
    Solution
    $$y = \sin(2 \sin^{-1} x)$$
    Put $$x = \sin \theta$$. Then $$\theta = \sin^{-1} x$$
    $$\therefore y = \sin 2 \theta$$
    $$\therefore \frac{dy}{dx} = \frac{dy}{d \theta} \times \frac{d \theta}{dx} = 2 \cos 2 \theta \times \frac{1}{\sqrt{1 - x^2}}$$
    $$= \frac{2(1 - 2 \sin^2 \theta)}{\sqrt{1 - x^2}} = \frac{2 - 4x^2}{\sqrt{1 - x^2}} $$
  • Question 4
    1 / -0
    If function $$f(x)=\dfrac{x^2-9}{x-3}$$ is continuous at $$x=3$$, then value of $$(3)$$ will be:
    Solution
    $$f(x)=\dfrac{x^2-9}{x-3}$$
    Left hand limit
    $$f(3+0)=\displaystyle \lim_{h \rightarrow 0}f(3+h)$$
    $$=\displaystyle \lim_{h \rightarrow 0} \dfrac{(3+h)^2-9}{3+h-3}$$
    $$=\displaystyle \lim_{h \rightarrow 0} \dfrac{h(6+h)}{h}$$
    $$=\displaystyle \lim_{h \rightarrow 0} (6+h)$$
    $$=6$$
    Function is continous at $$x=3$$, so
    $$f(3)=f(3+0)$$
    $$f(3)=6$$
    Hence, option $$(a)$$ is correct.
  • Question 5
    1 / -0
    If $$f(x)=\begin{cases} \begin{matrix} \dfrac{\log (1+mx)- \log (1-nx)}{x}; & x \ne 0 \end{matrix} \\ \begin{matrix} k; & x=0 \end{matrix} \\ \begin{matrix}  &  \end{matrix} \end{cases}$$
    is continuous at $$x=0$$ then the value of $$k$$ will be:
    Solution
    $$\therefore$$ Function is continous at $$x=0$$
    $$\therefore \displaystyle \lim_{x \rightarrow 0} f(x)=f(0)$$
    $$\Rightarrow \displaystyle \lim_{x \rightarrow 0} \dfrac{\log (1+mx)- \log (1-nx)}{x}=k$$
    $$\Rightarrow \displaystyle \lim_{x \rightarrow 0} \dfrac{ [mx-\dfrac{m^2 x^2}{2}+ \dfrac{m^3 x^3}{3} - ...]- [nx-\dfrac{n^2 x^2}{2}+ \dfrac{n^3 x^3}{3} - ...]}{x}=k$$
    $$\Rightarrow \displaystyle \lim_{x \rightarrow 0} \dfrac{x \left[ m-\dfrac{m^2 x^2}{2}+ \dfrac{m^3 x^3}{3}-...+n+\dfrac{n^2 x^2}{2}+ \dfrac{n^3 x^3}{3} +... \right]}{x}=k$$
    $$\Rightarrow \displaystyle \lim_{x \rightarrow 0} m-\dfrac{m^2 x^2}{2}+ \dfrac{m^3 x^3}{3}-...+n+\dfrac{n^2 x^2}{2}+ \dfrac{n^3 x^3}{3} +... =k$$
    $$\Rightarrow m+n=k$$
    $$\Rightarrow k=m+n$$
    Hence, option $$(b)$$ is correct.
  • Question 6
    1 / -0
    If function $$f(x)=\begin{cases} \begin{matrix} \dfrac{\sin 3x}{x}; & x \ne 0 \end{matrix} \\ \begin{matrix} m; & x=0 \end{matrix} \\ \begin{matrix}  &  \end{matrix} \end{cases}$$
    is continuous at $$x=2$$ then value of $$m$$ will be:
    Solution
    $$f(x)=\begin{cases} \begin{matrix} \dfrac{\sin 3x}{x}; & x \ne 0 \end{matrix} \\ \begin{matrix} m; & x=0 \end{matrix} \\ \begin{matrix} & \end{matrix} \end{cases}$$
    $$f(0)=m$$
    $$f(0+0)=\displaystyle \lim_{h \rightarrow 0}f(0+h)$$
    $$\displaystyle \lim_{h \rightarrow 0} \dfrac{\sin 3 (0+h)}{0+h}$$
    $$\displaystyle \lim_{h \rightarrow 0}3 \dfrac{\sin 3 h}{3h}$$
    $$=3 \times 1$$
    $$=3$$
    At $$x=a$$ function is continuous.
    So, $$f(0)=f(0+0)$$
    $$m=3$$
    Hence, option $$(a)$$ is correct.
  • Question 7
    1 / -0
    Let $$x={f}''(t) cost +{f}'(t) sint$$  and $$y={-f}''(t) sint+{f}'(t) cost.$$ Then $$\displaystyle \int \left [ \left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 \right ]^{\frac{1}{2}} dt$$ equals
    (Note : $$f(x), f'(x), f''(x) , f'''(x) >0$$ )
    Solution

    $$x=f''(t)\cos { t } +f'(t)\sin { t } \\ \dfrac { dx }{ dt } =f'''(t)\cos { t } -f''(t)\sin { t } +f''(t)\sin { t } +f'(t)\cos { t } \\ \dfrac { dx }{ dt } =f'''(t)\cos { t } +f'(t)\cos { t } \\ \dfrac { dx }{ dt } =(f'''(t)+f'(t))\cos { t } ..........(1)\\ y=-f''(t)\sin { t } +f'(t)\cos { t } \\ \dfrac { dy }{ dt } =-f'''(t)\sin { t } -f''(t)\cos { t } +f''(t)\cos { t } -f'(t)\sin { t } \\ \dfrac { dy }{ dt } =-f'''(t)\sin { t } -f'(t)\sin { t } \\ \dfrac { dy }{ dt } =-\sin { t } (f'''(t)+f'(t))........(2)\\ add\quad squares\quad of\quad eq.1\quad and\quad 2\quad \\ { \left( \dfrac { dx }{ dt }  \right)  }^{ 2 }+{ \left( \dfrac { dy }{ dt }  \right)  }^{ 2 }={ (f'''(t)+f'(t)) }^{ 2 }\\ { \left( { \left( \dfrac { dx }{ dt }  \right)  }^{ 2 }+{ \left( \dfrac { dy }{ dt }  \right)  }^{ 2 } \right)  }^{ \dfrac { 1 }{ 2 }  }=f'''(t)+f'(t)\\ integrate\quad both\quad sides\quad \\ \int { { \left( { \left( \dfrac { dx }{ dt }  \right)  }^{ 2 }+{ \left( \dfrac { dy }{ dt }  \right)  }^{ 2 } \right)  }^{ \dfrac { 1 }{ 2 }  }dt } =f''(t)+f(t)+c$$

  • Question 8
    1 / -0
    The set of all points where the function $$f(\displaystyle \mathrm{x})=\frac{x}{1+|x|}$$ is differentiable is 
    Solution
    $$f(x) = \dfrac{x}{1+|x|} $$

    For $$x\geq 0 $$, $$f(x) = \dfrac{x}{1+x} $$

    For $$x<0 $$, $$f(x) = \dfrac{x}{1-x}$$

    $$f(x)$$ is continuous and differentiable at all points except perhaps at $$x=0 $$. 

    Hence, we will check the differentiability at $$x=0$$. 

    As $$x \rightarrow 0 $$, $$f(x) \rightarrow 0 $$. $$f(0) = 0 $$. 

    Hence, $$f(x) $$ is continuous at $$x=0$$. 

    $$RHD = \dfrac{ 1+x-x}{(1+x)^2} = 1 $$ {see that $$f(x)=\infty$$ at $$x=-1$$ but 

    $$-1 \notin \ [0,\infty)$$}

    $$LHD = \dfrac {1-x+x}{(1-x)^2} = 1 $$ 

    Hence, $$f(x)$$ is differentiable at $$x=0$$. 

    Hence, option A is correct.
  • Question 9
    1 / -0
    If $$y=x^{\displaystyle x^{\displaystyle x^{\displaystyle \dots^{\displaystyle\infty}}}}$$, find $$\displaystyle\frac{dy}{dx}$$.
    Solution
    The given function may be written as,
    $$y=x^{\displaystyle y}$$
    Taking $$\log$$ on both sides,
    $$\log{y}=\log { { x }^{ y } } $$
    $$\log{y}=y\log{x}$$
    Differentiate w.r. to $$x$$
    $$\displaystyle \frac { 1 }{ y } \frac { dy }{ dx } =y\frac { d }{ dx } \left( \log { x }  \right) +\log { x } \frac { d }{ dx } y$$

    $$\displaystyle \frac { 1 }{ y } \frac { dy }{ dx } =\frac { y }{ x } +\log { x } .\frac { dy }{ dx } $$

    $$\displaystyle \frac { 1 }{ y } \frac { dy }{ dx } -\log { x } .\frac { dy }{ dx } =\frac { y }{ x } $$

    $$\displaystyle \frac { dy }{ dx } \left( \frac { 1 }{ y } -\log { x }  \right) =\frac { y }{ x } $$

    $$\displaystyle \frac { dy }{ dx } \left( \frac { 1-y\log { x }  }{ y }  \right) =\frac { y }{ x }
    $$

    $$\therefore \displaystyle \frac { dy }{ dx } =\frac { { y }^{ 2 } }{ x\left( 1-y\log { x }  \right)  } $$
  • Question 10
    1 / -0
    Derivative of $$({\log{x}})^{\displaystyle\cos{x}}$$ with respect to $$x$$ is
    Solution
    $$y={ \log { x }  }^{ \cos { x }  }$$
    Taking log on both sides, we get
    $$\log { y } =\log { \left( { \log { x }  }^{ \cos { x }  } \right)  } $$
    $$\log { y } =\cos { x } .\left[ \log { \left( \log { x }  \right)  }  \right] $$
    Differentiate w.r. to $$x$$
    $$\displaystyle \frac { 1 }{ y } \frac { dy }{ dx } =\cos { x } \frac { d }{ dx } \left[ \log { \left( \log { x }  \right)  }  \right] +\left[ \log { \left( \log { x }  \right)  }  \right] \frac { d }{ dx } \cos { x } $$

    $$\displaystyle \frac { 1 }{ y } \frac { dy }{ dx } =\cos { x } .\frac { 1 }{ \log { x }  } \frac { d }{ dx } \left( \log { x }  \right) -\left[ \log { \left( \log { x }  \right)  }  \right] \sin { x } $$

    $$\displaystyle \frac { dy }{ dx } =y\left[ \cos { x.\frac { 1 }{ x\log { x }  } - } \left[ \log { \left( \log { x }  \right)  }  \right] \sin { x }  \right] $$

    $$\therefore \displaystyle \frac { dy }{ dx } ={ \log { x }  }^{ \cos { x }  }\left[ \cos { x.\frac { 1 }{ x\log { x }  } - } \left[ \log { \left( \log { x }  \right)  }  \right] \sin { x }  \right] $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now