Self Studies

Continuity and Differentiability Test - 37

Result Self Studies

Continuity and Differentiability Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y=x^{\left(x^{ x}\right)}$$, then $$\displaystyle\frac{dy}{dx}$$ is
    Solution
    $$y={ x }^{ \left( { x }^{ x } \right)  }$$
    Take log on both sides
    $$\log y=\log { { x }^{ \left( { x }^{ x } \right)  } } $$
    $$\log { y } ={ x }^{ x }\log { x } $$ .... $$(i)$$

    Let $${ x }^{ x }=z$$
    $$\therefore x\log { x } =\log { z } $$
    Differentiate both sides with respect to $$x$$

    $$\cfrac { 1 }{ z } \cfrac { dz }{ dx } =\log { x } +\cfrac { x }{ x } $$

    $$\cfrac { dz }{ dx } =z\left[ 1+\log { x }  \right] $$

    $$\cfrac { dz }{ dx } ={ x }^{ x }\left[ \log { e } +\log { x }  \right] $$

    $$\cfrac { dz }{ dx } ={ x }^{ x }\log { ex } $$

    Equation $$(i)\Longrightarrow \log { y } =z\log { x } $$
    Differentiate both sides with respect to $$x$$

    $$\cfrac { 1 }{ y } \cfrac { dy }{ dx } =\log { x\cdot \cfrac { dz }{ dx }  } +\cfrac { z }{ x } $$

    $$\therefore \cfrac { dy }{ dx } =y\left[ { x }^{ x }\left( \log { ex }  \right) \log { x+{ x }^{ x-1 } }  \right] $$
  • Question 2
    1 / -0
    If $$f(x)={|x|}^{|\sin{x}|}$$, then $$\displaystyle f^\prime\left(-\frac{\pi}{4}\right)=$$
    Solution
    In the neighbourhood of $$\displaystyle -\frac{\pi}{4}$$, we have

    $$f(x)={(-x)}^{\displaystyle-\sin{x}}=e^{\displaystyle-\sin{x}\log{(-x)}}$$

    $$\therefore \displaystyle f^\prime(x)=e^{\displaystyle-\sin{x}\log{(-x)}}\left(-\cos{x}.\log{(-x)}-\frac{\sin{x}}{x}\right)$$

    $$\displaystyle =(-x)^{\displaystyle-\sin{x}}\left(-\cos{x}.\log{(-x)}-\frac{\sin{x}}{x}\right)$$

    $$\therefore \displaystyle

    f^\prime\left(-\frac{\pi}{4}\right)={\left(\frac{\pi}{4}\right)}^{\tfrac{1}{\sqrt{2}}}\left(\frac{-1}{\sqrt{2}}\log{\frac{\pi}{4}}+\frac{4}{\pi}\times\left(\frac{-1}{\sqrt{2}}\right)\right)$$

    $$\displaystyle={\left(\frac{\pi}{4}\right)}^{\tfrac{1}{\sqrt{2}}}\left(\frac{\sqrt{2}}{2}\log{\frac{4}{\pi}}-\frac{2\sqrt{2}}{\pi}\right)$$
  • Question 3
    1 / -0
    If $$x=\sin^{-1}t$$ and $$y=\log(1-{t}^{2})$$ , then $$\displaystyle \left .\frac{{d}^{2}y}{{d}{x}^{2}}\right|_{{t}=\frac{1}{2}} = $$
    Solution
    Given, $$x=\sin^{-1}t$$  or  $$\sin x=t$$ 

    and $$y=\log(1-t^{2})$$

    $$=\log(1-\sin^{2}x)$$

    $$=\log(\cos^{2}x)$$

    Hence, $$y=2\log(\ cosx)$$

    Therefore, $$\dfrac{dy}{dx}=\dfrac{-2\sin x}{\cos x}=-2\tan x$$ 

    $$\dfrac{d^{2}y}{dx^{2}}=-2\sec^{2}x=\dfrac{-2}{\cos^{2}x}$$

    $$=\dfrac{-2}{1-\sin^{2}x}=\dfrac{-2}{1-t^{2}}$$

    Hence, $$\dfrac{d^{2}y}{dx^{2}}|_{t=\frac{1}{2}}=\dfrac{-2}{1-\left(\dfrac{1}{2}\right)^{2}}=\dfrac{-2}{1-\dfrac{1}{4}}=\dfrac{-8}{4-1}=\dfrac{-8}{3}$$.
  • Question 4
    1 / -0
    The weight $$W$$ of a certain stock of fish is given by $$W = nw$$, where n is the size of stock and $$w$$ is the average weight of a fish. If $$n$$ and $$w$$ change with time $$t$$ as $$n = 2t^2 + 3$$ and $$w = t^2 - t + 2$$, then the rate of change of $$W$$ with respect to $$t$$ at $$t = 1$$ is.
    Solution
    $$(2t^{2}+3)(t^{2}+t+2)$$
    $$=2t^{4}+2t^{3}+4t^{2}+3t^{2}+3t+6$$
    $$W=2t^{4}+2t^{3}+7t^{2}+3t+6$$
    Hence
    $$\dfrac{dW}{dt}$$
    $$=8t^{3}+6t^{2}+14t+3$$
    At $$t=1$$ we get 
    $$\dfrac{dW}{dt}$$ at $$t=1$$
    $$=8+6+14+3$$
    $$=31$$.
  • Question 5
    1 / -0
    $$\displaystyle y=\left ( 1+\frac{1}{x} \right )^{x}+x^{1+\frac{1}{x}}.$$
    Differentiate
    Solution

    Let $$y = y_1+y_2$$
    $$\Rightarrow \cfrac{dy}{dx}=\cfrac{dy_1}{dx}+\cfrac{dy_2}{dx}$$
    Now $$y_1 = \left(1+\frac{1}{x}\right)^x \Rightarrow \log y_1 =x \log\left(1+\frac{1}{x}\right)$$


    Differentiating both side w.r.t $$x$$


    $$\Rightarrow \cfrac{1}{y_1}\cfrac{dy_1}{dx} = \log(1+\frac{1}{x})+x.\cfrac{1}{1+\frac{1}{x}}.\left(\frac{-1}{x}^2\right)$$


    $$\Rightarrow \cfrac{dy_1}{dx} = y_1\left[\log(1+\frac{1}{x})-\cfrac{1}{1+x}\right]$$
    And $$y_2  = x^{1+\frac{1}{x}} \Rightarrow \log y_2 = (1+\frac{1}{x}) \log x$$


    Differentiating both sides, 


    $$\Rightarrow \cfrac{1}{y_2}\cfrac{dy_2}{dx} = (1+\frac{1}{x})\cfrac{1}{x}+(\log x)(\frac{-1}{x}^2)$$


    $$\Rightarrow \cfrac{dy_2}{dx} = y_2\left[\cfrac{(1+x)- \log x}{x^2}\right]$$
    $$\therefore

    \cfrac{dy}{dx} = 

    \left(1+\cfrac{1}{x}\right)\left[\log(1+\frac{1}{x})-\cfrac{1}{1+x}\right]+x^{1+\frac{1}{x}}\left[\cfrac{(1+x)-

    \log x}{x^2}\right]$$

     

  • Question 6
    1 / -0

    Directions For Questions

    If $$y=f(x)$$ be a differentiable function of x whose second, third, ..., n$$^{th}$$ order derivatives exist & the n$$^{th}$$ derivative of $$y$$ is denoted by $$y_{n}$$, $$\displaystyle \frac{d^{n}y}{dx^{n}}$$, $$D^{n}y$$, $$y^{n}$$, $$f^{n}\left ( x \right )$$
    $$\Rightarrow $$   $$\displaystyle \frac{d^{n}y}{dx^{n}}=\lim_{h\rightarrow 0}\frac{f^{n-1}\left ( x+h \right )-f^{n-1}\left ( x \right )}{h}$$
    On the basis of above information answer the following questions.

    ...view full instructions

    If $$x=\sin t$$, $$y=\sin kt$$ then value of $$\left ( 1-x^{2} \right )y_{2}-xy_{1}$$ is
    Solution
    $$\because $$   $$x=\sin t$$, $$y=\sin kt$$
    $$\Rightarrow \dfrac{dx}{dt}=\cos t, \dfrac{dy}{dt}=k\cos kt$$
    $$\therefore $$   $$\displaystyle y_{1}=\frac{dy}{dx}=\frac{dy}{dt}.\frac{dt}{dx}=\frac{k\cos kt}{\cos t}$$
    $$\Rightarrow $$   $$y_{1}\cos t=k\cos kt$$ 
    On squaring both sides, we have
    $$y_{1}^{2}\cos^{2} t=k^{2}\cos^{2} kt$$
    $$y_{1}^{2}\left ( 1-\sin ^{2}t \right )=k^{2}\left ( 1-\sin ^{2}kt \right )$$
    $$\Rightarrow $$   $$y_{1}^{2}\left ( 1-x^{2} \right )=k^{2}\left ( 1-y^{2} \right )$$
    Differentiating both sides w.r to x, we have
    $$\left ( 1-x^{2} \right )\left ( 2y_{1}y_{2} \right )+y{_{1}}^{2}\left ( -2x \right )=k^{2}\left ( -2yy_{1} \right )$$
    $$\Rightarrow $$   $$\left ( 1-x^{2} \right )y_{2}-xy_{1}=-k^{2}y$$
  • Question 7
    1 / -0
    If $$f(x)=\left | x \right |+\left | \cos x \right |$$, then
    Solution
    $$f\left( x \right) =\left| x \right| +\left| \cos { x }  \right| $$
    $$f'\left( x \right) =\cfrac { \left| x \right|  }{ x } +\cfrac { \left| \cos { x }  \right|  }{ \cos { x }  } $$
    as $$x\rightarrow { \cfrac { \pi  }{ 2 }  }^{ - }\quad \cfrac { \left| x \right|  }{ x } =1$$
    Since $$\cos { x } >0$$ from $$x=0$$ to $$\cfrac { \pi  }{ 2 } $$
    $$\cfrac { \left| \cos { x }  \right|  }{ \cos { x }  } =1$$
    $$\Rightarrow \displaystyle \lim _{ x\rightarrow \frac { \pi  }{ 2 }  }{ f'\left( x \right)  } =1+1=2$$

    $$x\rightarrow \cfrac { \pi  }{ 2 } ^{ + }\quad \cfrac { \left| x \right|  }{ x } =1$$

    Since $$\cos { x } <0$$ from $$x=\cfrac { \pi  }{ 2 } $$ to $$\pi $$
    $$\cfrac { \left| \cos { x }  \right|  }{ \cos { x }  } =-1$$
    $$\displaystyle \lim _{ x\rightarrow \frac { \pi  }{ 2 } ^{ + } }{ f'\left( x \right)  } =1-1=0$$
    LHL$$\neq $$RHL
    $$\therefore \displaystyle \lim _{ x\rightarrow \frac { \pi  }{ 2 }  }{ f'\left( x \right)  } =f'\left( \cfrac { \pi  }{ 2 }  \right) $$ does not exist.
  • Question 8
    1 / -0
    Given the parametric equations $$x=f(t),y=g(t).$$ Then $$\displaystyle \frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } $$ equals
    Solution
    We have $$\displaystyle \dfrac { dy }{ dx } =\dfrac { \dfrac { dy }{ dt }  }{ \dfrac { dx }{ dt }  } $$
    Again differentiating both sides w.r.t x,
    we get $$\displaystyle \dfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } =\dfrac { d }{ dt } \left( \dfrac { \dfrac { dy }{ dt }  }{ \dfrac { dx }{ dt }  }  \right) \dfrac { dt }{ dx } $$
    $$\displaystyle =\dfrac { \dfrac { { d }^{ 2 }y }{ { dt }^{ 2 } } \left( \dfrac { dx }{ dt }  \right) -\left( \dfrac { { d }^{ 2 }x }{ { dt }^{ 2 } }  \right) \dfrac { dy }{ dt }  }{ { \left( \dfrac { dt }{ dt }  \right)  }^{ 2 } } \times \dfrac { 1 }{ \dfrac { dx }{ dt }  } $$
    $$\displaystyle =\dfrac { \dfrac { { d }^{ 2 }y }{ { dt }^{ 2 } } .\left( \dfrac { dx }{ dt }  \right) -\left( \dfrac { { d }^{ 2 }x }{ { dt }^{ 2 } }  \right) .\left( \dfrac { dy }{ dt }  \right)  }{ { \left( \dfrac { dx }{ dt }  \right)  }^{ 3 } } $$
  • Question 9
    1 / -0
    Derivative of $${(x\cos{x})}^x$$ with respect to $$x$$ is
    Solution
    Let $$y={(x\cos{x})}^x$$.
    Taking logarithm on both sides, we get
    $$\log{y}=\log{{(x\cos{x})}^x}$$
    $$=x\log{(x\cos{x})}$$
    $$=x\log{x}+x\log{\cos{x}}$$
    Differentiating both sides with respect to $$x$$, we get

    $$\displaystyle\frac{1}{y}\frac{dy}{dx}=\frac{d}{dx}(x\log{x})+\frac{d}{dx}(x\log{\cos{x}})$$
    $$\displaystyle \frac { dy }{ dx } =y\left[ \left( 1+\log { x }  \right) +\left( \log { \cos { x\quad +\displaystyle \frac { x }{ \cos { x }  } \displaystyle \frac { d }{ dx } \left( \cos { x }  \right)  }  }  \right)  \right] $$
    $$\therefore \displaystyle\frac{dy}{dx}={(x\cos{x})}^x\left[(\log{x}+1)+\left\{\log{\cos{x}}+\frac{x}{\cos{x}}.(-\sin{x})\right\}\right]$$
  • Question 10
    1 / -0
    If $$x=log(1+t^2)$$ and $$y=t-tan^{-1}t$$. Then, $$\dfrac{dy}{dx}$$ is equal to 
    Solution
    Differentiating wrt 't'
    $$\dfrac{dx}{dt}=\dfrac{d}{dt}(log (1+t^2))=\dfrac{1}{1+t^2}2t=\dfrac{2t}{1+t^2}$$

    $$\dfrac{dy}{dt}=\dfrac{d}{dt}(t-\tan^{-1}t)=1-\dfrac{1}{1+t^2}=\dfrac{t^2}{1+t^2}$$

    $$\dfrac{dy}{dx}=\dfrac{t^2/(1+t^2)}{2t/(1+t^2)}=\dfrac{t}{2}$$

    $$x= log (1+t^2)$$

    $$e^x=1+t^2$$

    $$t=\sqrt{e^x-1}$$

    $$\dfrac{t}{2}=\dfrac{\sqrt{e^x-1}}{2}$$

    $$\therefore \dfrac{dy}{dx}=\dfrac{\sqrt{e^x-1}}{2}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now