Self Studies

Continuity and Differentiability Test - 39

Result Self Studies

Continuity and Differentiability Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If a curve is given by $$x=a\cos t+\displaystyle\frac{b}{2}\cos 2t$$ and $$y=\sin t +\displaystyle\frac{b}{2}\sin 2t$$, then the points for which $$\displaystyle\frac{d^2y}{dx^2}=0$$, are given by.
    Solution
    We have,
    $$x=a\cos t+\displaystyle\frac{b}{2}\cos 2t$$
    and $$y=a\sin t+\displaystyle\frac{b}{2}\sin 2t$$
    On differentiating both equations w.r.t. t, we get
    $$\displaystyle\frac{dx}{dt}=-a\sin t -b\sin 2t$$
    and $$\displaystyle\frac{dy}{dt}=a\cos t +b\cos 2t$$
    $$\therefore \displaystyle\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{a\cos t +b\cos 2t}{-a\sin t-b\sin 2t}$$
    $$\Rightarrow \displaystyle\frac{dy}{dx}=-\frac{(a\cos t+b\cos 2t)}{(a\sin t+b\sin 2t)}$$
    Now, $$\displaystyle\frac{d^2y}{dx^2}=\frac{d}{dx}\left(\displaystyle\frac{dy}{dx}\right)=\frac{d}{dt}\left(\displaystyle\frac{dy}{dx}\right)\cdot \frac{dt}{dx}$$
    $$\Rightarrow \displaystyle\frac{d^2y}{dx^2}=-\frac{d}{dt}\left(\displaystyle\frac{a\cos t+b\cos 2t}{a\sin t+b\sin 2t}\right)\frac{dt}{dx}$$
    $$=\displaystyle \frac{\displaystyle \begin{bmatrix} (a\sin t+b]sin 2t)(-a\sin t-2b\sin 2t) \\ -(a\cos t+b\cos 2t)(a\cos t+2b\cos 2t)\end{bmatrix}}{(a\sin t+b\sin 2t)^2}\times \frac{1}{-a\sin t-b\sin 2t}$$
    $$=\displaystyle\frac{\displaystyle\begin{bmatrix} a^2\sin^2t+3ab\sin t\sin 2t+2b^2\sin^22t\\ +a^2\cos^2t+3ab\cos t\cos 2t+2b^2\cos^22t\end{bmatrix}}{(a\sin t+b\sin 2t)^3}$$
    $$=\displaystyle\frac{a^2(\sin^2t+\cos^2t)+b^2(\sin^22t+\cos^22t)+3ab\cos(2t-t)}{(a\sin t+b\sin 2t)^3}$$
    $$\Rightarrow \displaystyle\frac{d^2y}{dx^2}=-\left[\displaystyle\frac{a^2+2b^2+3ab\cos t}{(a\sin t+b\sin 2t)^3}\right]$$
    Given, $$\displaystyle\frac{d^2y}{dx^2}=0$$
    $$\Rightarrow a^2+2b^2+3ab\cos t=0$$
    $$\Rightarrow \cos t=-\left(\displaystyle\frac{a^2+2b^2}{3ab}\right)$$
  • Question 2
    1 / -0
    Let f be a function which is continuous and differentiable for all real x. If $$f(2)=-4$$ and $$f'(x)\geq 6$$ for all $$x\epsilon [2, 4]$$, then.
    Solution
    As $$f(2)=-4$$ and $$f'(x) \geq 6 \: \forall x\in [2,4] $$

    Applying Lagrange's mean value theorem,

    $$\dfrac{f(4)-f(2)}{4-2}=f'(c) \geq 6$$

    $$\Rightarrow \dfrac{f(4)-f(2)}{2}\geq 6$$

    $$\Rightarrow f(4)-f(2)\geq 12$$

    $$\Rightarrow f(4)\geq 12+f(2)$$

    $$\Rightarrow f(4)\geq 12-4$$

    $$\Rightarrow f(4)\geq 8$$
  • Question 3
    1 / -0
    Let $$f(x)$$ be a differentiable function such that $$f(x) = x^{2} + \int_{0}^{x} e^{-t} f(x - t)dt$$, then $$\int_{0}^{1}f(x) dx=$$
    Solution

  • Question 4
    1 / -0
    If $$\sin ^{ -1 }{ \left( \dfrac { { x }^{ 2 }-{ y }^{ 2 } }{ { x }^{ 2 }+{ y }^{ 2 } }  \right)  } =\log { a } $$, then $$\dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } $$ equals
    Solution
    We have $$\sin ^{ -1 }{ \left( \dfrac { { x }^{ 2 }-{ y }^{ 2 } }{ { x }^{ 2 }+{ y }^{ 2 } }  \right)  } =\log { a } $$
    $$\Rightarrow \dfrac { { x }^{ 2 }-{ y }^{ 2 } }{ { x }^{ 2 }+{ y }^{ 2 } } =\sin { \left( \log { a }  \right)  } $$
    $$\Rightarrow \dfrac { 1-\tan ^{ 2 }{ \theta  }  }{ 1+\tan ^{ 2 }{ \theta  }  } =\sin { \left( \log { a }  \right)  } $$
    (on putting $$y=x\tan { \theta  } $$)
    $$\Rightarrow \cos { 2\theta  } =\sin { \left( \log { a }  \right)  } $$
    $$\Rightarrow 2\theta =\cos ^{ -1 }{ \left( \sin { \log { a }  }  \right)  }$$
    $$\Rightarrow \theta =\dfrac { 1 }{ 2 } \cos ^{ -1 }{ \left\{ \sin { \left( \log { a }  \right)  }  \right\}  } $$
    $$\tan ^{ -1 }{ \left( \dfrac { y }{ x }  \right)  } =\dfrac { 1 }{ 2 } \cos ^{ -1 }{ \left\{ \sin { \log { a }  }  \right\}  } $$
    $$\Rightarrow \dfrac { 1 }{ 1+\dfrac { { y }^{ 2 } }{ { x }^{ 2 } }  } \cdot \dfrac { x\dfrac { dy }{ dx } -y }{ { x }^{ 2 } } =0$$
    $$\Rightarrow x\dfrac { dy }{ dx } -y=0$$
    $$\Rightarrow \dfrac { dy }{ dx } =\dfrac { y }{ x } $$           ...(i)
    $$\Rightarrow \dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } =\dfrac { -y }{ { x }^{ 2 } } +\dfrac { 1 }{ x } \cdot \dfrac { dy }{ dx } =\dfrac { -y }{ { x }^{ 2 } } +\dfrac { 1 }{ x } \left( \dfrac { y }{ x }  \right) $$         ....{from (i)}
    $$\Rightarrow \dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } =\dfrac { -y }{ { x }^{ 2 } } +\dfrac { y }{ { x }^{ 2 } } =0$$
  • Question 5
    1 / -0
    If $$y=\tan ^{ -1 }{ \left( \cfrac { 4x }{ 1+5{ x }^{ 2 } }  \right)  } +\tan ^{ -1 }{ \left( \cfrac { 2+3x }{ 2-3x }  \right)  } $$, then $$\cfrac { dy }{ dx } $$ is
    Solution
    Use properties of inverse trigonometric functions-

    y= $$\tan ^{ -1 }{ 5x}+\tan^{-1}{(-x)}$$ +$$\tan^{-1}{1} +\tan^{-1}{(-1.5x)}$$

    $$\Rightarrow$$ y= $$\tan ^{ -1 }{ 5x}-\tan^{-1}{x}$$ +$$\tan^{-1}{1} -\tan^{-1}{1.5x}$$

    Differentiate with respect to x,

    $$\therefore $$ $$\dfrac{d(tan^{-1}x)}{dx}$$ = $$\dfrac{1}{(1+x^{2})}$$


    So,

    $$\therefore$$ $$\dfrac{dy}{dx} = \dfrac{5}{(1+25x^{2})} - \dfrac{1}{(1+x^{2})} + 0 - \dfrac{1.5}{(1+2.25x^{2})}$$

    $$\therefore$$ $$\dfrac{dy}{dx} = \dfrac{5}{(1+25x^{2})} - \dfrac{1}{(1+x^{2})}  - \dfrac{1.5}{(1+2.25x^{2})}$$


  • Question 6
    1 / -0
    Let $$f\left( x \right)$$ and $$g\left( x \right)$$ be defined and differentiable for $$x\ge { x }_{ 0 }$$ and $$f\left( { x }_{ 0 } \right) =g\left( { x }_{ 0 } \right) , f^{ ' }\left( x \right) >g^{ ' }\left( x \right) for\ x>{ x }_{ 0 }$$ then
  • Question 7
    1 / -0
    Let g (x), $$x \geq 0$$, be a non-negative continuous function and let $$F(x) = \int_{0}^{x} f(t) dt$$, $$x \geq 0$$. If for some c > 0, f(x) $$\leq$$ c F(x) for all $$x \geq 0$$, then
    Solution
    $$f\left(x\right)\ge 0$$ for $$x\ge 0$$
    $$F\left(x\right)=\int_{0}^{x}{f\left(t\right)dt}$$ for all $$x\ge 0$$
    As $$c<0,f\left(x\right)\le cF\left(x\right)$$ for $$x\ge 0$$
    $$f\left(x\right)=0\Rightarrow {F}^{\prime}{\left(x\right)}=f\left(x\right)$$ for $$x\ge 0$$
    Since $$f\left(x\right)\le cF{\left(x\right)}$$ since $${F}^{\prime}{\left(x\right)}=f\left(x\right)$$
    $$\Rightarrow {e}^{-cx}{F}^{\prime}{\left(x\right)}-c{e}^{-cx}F{\left(x\right)}\le 0$$ by multiplying by $${e}^{-cx}$$ where $${e}^{-cx}>0$$
    When $$x\rightarrow \infty, {e}^{-cx}\rightarrow 0$$
    $$\Rightarrow \dfrac{d}{dx}{\left({e}^{-cx}F\left(x\right)\right)}\le 0$$ for all $$x\ge 0$$
    $$\Rightarrow {e}^{-cx}F\left(x\right)$$ is a decreasing function for $$x\ge 0$$
    Let $$g\left(x\right)={e}^{-cx}F\left(x\right)$$ be a decreasing function.
    $$\Rightarrow g\left(0\right)\ge g\left(x\right)$$ for $$x\ge 0$$
    $$\Rightarrow 1\times F\left(0\right)\ge {e}^{-cx}F\left(x\right)$$
    Given:$$F{\left(0\right)}=\int_{0}^{0}{F\left(t\right)dt}=0$$
    $$\Rightarrow {e}^{-cx}F\left(x\right)\le 0$$
    $$\Rightarrow F\left(x\right)\le 0$$ and $${e}^{-cx}\ge 0$$
    $$\Rightarrow c>0$$
    $$\Rightarrow cF\left(x\right)\le 0$$
    $$\Rightarrow f\left(x\right)\le cF\left(x\right)\le 0$$
    Since $$f\left(x\right)$$ is non-negative $$f\left(x\right)\le 0\Rightarrow f\left(x\right)=0$$

  • Question 8
    1 / -0
    If the function $$f:\left[ 0,8 \right] \rightarrow R$$ is differentiable, then for $$0<a,b<2,\int _{ 0 }^{ 8 }{ f(t) } dt$$ is equal to
  • Question 9
    1 / -0
    A point where function $$f(x)$$ is not continuous where $$f(x)=\left[ \sin { \left[ x \right]  }  \right] $$ in $$\left( 0,2\pi  \right) $$; is ($$\left[ \ast  \right] $$ denotes greatest integer $$\le x$$)
  • Question 10
    1 / -0
    Consider $$f(x)=\lim _{ n\rightarrow \infty  }{ \cfrac { { x }^{ n }-\sin { { x }^{ n } }  }{ { x }^{ n }+\sin { { x }^{ n } }  }  } $$ for $$x>0,x\neq 1,f(1)=0$$ then
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now