$$f\left(x\right)\ge 0$$ for $$x\ge 0$$
$$F\left(x\right)=\int_{0}^{x}{f\left(t\right)dt}$$ for all $$x\ge 0$$
As $$c<0,f\left(x\right)\le cF\left(x\right)$$ for $$x\ge 0$$
$$f\left(x\right)=0\Rightarrow {F}^{\prime}{\left(x\right)}=f\left(x\right)$$ for $$x\ge 0$$
Since $$f\left(x\right)\le cF{\left(x\right)}$$ since $${F}^{\prime}{\left(x\right)}=f\left(x\right)$$
$$\Rightarrow {e}^{-cx}{F}^{\prime}{\left(x\right)}-c{e}^{-cx}F{\left(x\right)}\le 0$$ by multiplying by $${e}^{-cx}$$ where $${e}^{-cx}>0$$
When $$x\rightarrow \infty, {e}^{-cx}\rightarrow 0$$
$$\Rightarrow \dfrac{d}{dx}{\left({e}^{-cx}F\left(x\right)\right)}\le 0$$ for all $$x\ge 0$$
$$\Rightarrow {e}^{-cx}F\left(x\right)$$ is a decreasing function for $$x\ge 0$$
Let $$g\left(x\right)={e}^{-cx}F\left(x\right)$$ be a decreasing function.
$$\Rightarrow g\left(0\right)\ge g\left(x\right)$$ for $$x\ge 0$$
$$\Rightarrow 1\times F\left(0\right)\ge {e}^{-cx}F\left(x\right)$$
Given:$$F{\left(0\right)}=\int_{0}^{0}{F\left(t\right)dt}=0$$
$$\Rightarrow {e}^{-cx}F\left(x\right)\le 0$$
$$\Rightarrow F\left(x\right)\le 0$$ and $${e}^{-cx}\ge 0$$
$$\Rightarrow c>0$$
$$\Rightarrow cF\left(x\right)\le 0$$
$$\Rightarrow f\left(x\right)\le cF\left(x\right)\le 0$$
Since $$f\left(x\right)$$ is non-negative $$f\left(x\right)\le 0\Rightarrow f\left(x\right)=0$$