Self Studies

Continuity and Differentiability Test - 40

Result Self Studies

Continuity and Differentiability Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$u=f(x,y)$$ is a differentiable function of $$x$$ and $$y$$, where $$x$$ and $$y$$ are differentiable functions of $$t$$ then:
    Solution
    Given $$u=f(x,y)$$ is a a differentiable function of $$x$$ and $$y$$, where $$x, y$$ are differentiable functions of $$t$$.

    We have to find $$\dfrac{du}{dt}$$

    Since $$x, y$$ are differentiable functions of $$t$$

    Let $$x=g(t), y=h(t)$$

    Thus by chain rule we get

    $$\dfrac{du}{dt}=\dfrac{\partial f}{\partial x}\cdot \dfrac{dx}{dt}+\dfrac{\partial f}{\partial y}\cdot \dfrac{dy}{dt}$$
  • Question 2
    1 / -0
    The set of points, where the function $$f(x) = x|x|$$, is differentiable, is given by
  • Question 3
    1 / -0
    The function $$\displaystyle f(x) = (x^2 - 1) |x^2 - 3x + 2| + cos (|x|)$$, is not differentiable at x=
    Solution

  • Question 4
    1 / -0
    Let $$f:\left[ {0,2} \right] \to R$$ a function which is continuous on $$\left[ {0,2} \right]$$ and is differentiable on $$\left( {0,2} \right)$$ with $$f\left( 0 \right) = 1$$. Let $$F\left( x \right) = \int\limits_0^{{x^2}} {f\left( {\sqrt t } \right)} dt,$$ for $$x \in \left[ {0,2} \right]$$, if $$F'\left( x \right) = f'\left( x \right),\forall x \in \left( {0,2} \right),$$ then $$F(2)$$ equals to 
    Solution
    From Newton-Leibnitz's formula,
    $$\dfrac{d}{dx}\left[ \displaystyle \int_{\phi(x)}^{\psi(x)} f(t)dt\right]=f\left\{\psi(x)\right\} \left\{ \dfrac{d}{dx}\psi(x)\right\}-f\left\{ \phi(x) \right\} \left\{ \dfrac{d}{dx}\phi(x)\right\} $$

    Given that,
    $$F(x)=\displaystyle \int_{0}^{x^2}f(\sqrt{t})dt$$
    $$\therefore F'(x)=f(x)\cdot \dfrac d{dx}(x^2)-f(0)\cdot \dfrac d{dx}(0)$$
    $$\Rightarrow F'(x)=2xf(x)\qquad...(i)$$

    Also given that,
     $$ F'(x)=f'(x)$$
    $$\Rightarrow  2xf(x)=f'(x)$$     [ from $$(i)$$]
    $$\Rightarrow \dfrac{f'(x)}{f(x)}=2x$$
    Integrating both sides w.r.t. $$x$$,
    $$\Rightarrow \displaystyle \int \dfrac{f'(x)}{f(x)}dx=\displaystyle \int 2xdx$$
    $$\Rightarrow \ln\{f(x)\}=x^2+c $$
    $$\Rightarrow f(x)=e^{{x^2}+c}$$
    $$\Rightarrow f(x)=ke^{x^2}$$

    Now, $$f(0)=1$$
    $$\Rightarrow k=1$$

    Hence,$$f(x)=e^{x^2}$$

    $$\therefore F(2)=\displaystyle \int_{0}^{4}e^tdt=\big[e^t\big]_{0}^{4}=e^4-1$$

  • Question 5
    1 / -0

    Directions For Questions

    Let $$F : R \rightarrow R$$ be a thrice differentiable function. Suppose that $$F(1)=0, F(3)=-4$$ and $$F'(x) < 0$$ for all $$x \in (1,3)$$. Let $$f(x)=xF(x)$$ for all $$x \in R$$.

    ...view full instructions

    If $$\int_{1}^{3} F'(x)dx=-12$$ and $$\int_{1}^{3} x^{3} F' '(x) dx=40$$, then the correct expression(s) is/are
    Solution

  • Question 6
    1 / -0
    Which of the following function is differentiable at x=0
    Solution
    A function is differentiable at 0 only if it's L.H.L &R.H.L is equal.
    If $$f(x)=\sin\mid x \mid-\mid x \mid$$ then given that
    $$\sin(-x)=-\sin x$$ it can be expressed as,
    $$\therefore f(x)=\begin{Bmatrix}\sin x-x\quad  if \,x\ge 0\\ -\sin x+x\quad  if \,x<0\\ \end{Bmatrix}$$
    $$\Rightarrow f^{'}(x)=\begin{Bmatrix}\cos x-1 \quad if\, x\ge 0 \\ -\cos x+1 \quad if\, x<0\\ \end{Bmatrix}$$
    Given that $$\cos 0=1$$ we have $$f_{+}^{'}(0)=2$$ & $$f_{-}^{'}(0)=-2$$
    $$\therefore f_{+}^{'}(0) \ne f_{-}^{'}(0)$$
    If $$f(x)=\cos \mid x \mid-\mid x\mid$$ , then given that $$\cos(-x)=\cos(x)$$ can be written as:
    $$\therefore f(x)=\begin{Bmatrix}\cos x-x\quad  if \,x\ge 0\\ \cos x+x\quad  if \,x<0\\ \end{Bmatrix}$$
    $$\Rightarrow f^{'}(x)=\begin{Bmatrix}-\sin x+1 \quad if\, x\ge 0 \\ -\sin x+1 \quad if\, x<0\\ \end{Bmatrix}$$
    Given that $$\sin 0=0$$ we have $$f_{+}^{'}(0)=-1$$ & $$f_{-}^{'}(0)=1$$
    $$\therefore f_{+}^{'}(0) \ne f_{-}^{'}(0)$$
    If $$f(x)=\cos \mid x \mid+\mid x \mid$$, then
    $$\therefore f(x)=\begin{Bmatrix}\cos x+x\quad  if \,x\ge 0\\ \cos x-x\quad  if \,x<0\\ \end{Bmatrix}$$
    $$\Rightarrow f^{'}(x)=\begin{Bmatrix}-\sin x+1 \quad if\, x\ge 0 \\ -\sin x-1 \quad if\, x<0\\ \end{Bmatrix}$$
    Given that $$\sin 0=0$$ we have $$f_{+}^{'}(0)=1$$ & $$f_{-}^{'}(0)=-1$$
    $$\therefore A\Rightarrow \cos(\mid x \mid)+\mid x \mid$$
  • Question 7
    1 / -0
    If $$f : R \rightarrow R$$ is defined by
    $$f(x) = \left \{\begin{matrix} \dfrac{x + 2}{x^2 + 3x + 2} & if & x \in R - \{-1, -1\} \\ -1 & if & x = -2 \\ 0 & if  &x = -1\end{matrix} \right.$$ then $$f(x)$$ continuous on the set 
    Solution

  • Question 8
    1 / -0
    If $$x=a\cos^{3}\theta, y=a\sin^{3}\theta$$, then $$1+ {(\dfrac {dy}{dx})}^{2}$$ is
    Solution

    Differentiate $$x = a{\cos ^3}\theta $$ with respect to $$\theta $$,

    $$\frac{{dx}}{{d\theta }} =  - 3a{\cos ^2}\theta \sin \theta $$

    Differentiate $$y = a{\sin ^3}\theta $$ with respect to $$\theta $$,

    $$\frac{{dy}}{{d\theta }} = 3a{\sin ^2}\theta \cos \theta $$

    Now,

    $$\frac{{dy}}{{dx}} = \frac{{\frac{{dy}}{{d\theta }}}}{{\frac{{dx}}{{d\theta }}}}$$

    $$ =  - \frac{{3a{{\sin }^2}\theta \cos \theta }}{{3a{{\cos }^2}\theta \sin \theta }}$$

    $$ =  - \tan \theta $$

    Then,

    $$1 + {\left( {\frac{{dy}}{{dx}}} \right)^2} = 1 + {\left( { - \tan \theta } \right)^2}$$

    $$ = 1 + {\tan ^2}\theta $$

    $$ = {\sec ^2}\theta $$

  • Question 9
    1 / -0
    If $$ f\left( x+y \right) =f\left( x \right) +f\left( y \right)$$ then $$ f\left( x \right)$$ may be
    Solution

  • Question 10
    1 / -0
    The function $$f\left( x \right) = \,{\sin ^{ - 1}}\left( {\cos \,x} \right)\,is\,: - $$ 
    Solution
    Given:$$f\left(x\right)={\sin}^{-1}{\left(\cos{x}\right)}$$
    Continuity at $$x=0$$

    We have,LHL at $$x=0$$
    $$\displaystyle \lim_{x\rightarrow\,{0}^{-}}{f\left(x\right)}=\displaystyle \lim_{h\rightarrow\,0}{\sin}^{-1}{\left(\cos{\left(0-h\right)}\right)}$$

    $$=\displaystyle \lim_{h\rightarrow\,0}{\sin}^{-1}{\left(\cos{h}\right)}$$

    $$={\sin}^{-1}{1}=\dfrac{\pi}{2}$$

    RHL at $$x=0$$
    $$\displaystyle \lim_{x\rightarrow\,{0}^{+}}{f\left(x\right)}=\displaystyle \lim_{h\rightarrow\,0}{\sin}^{-1}{\left(\cos{\left(0+h\right)}\right)}$$

    $$=\displaystyle \lim_{h\rightarrow\,0}{\sin}^{-1}{\left(\cos{h}\right)}$$

    $$={\sin}^{-1}{1}=\dfrac{\pi}{2}$$

    $$f\left(0\right)={\sin}^{-1}{\left(\cos{0}\right)}={\sin}^{-1}{1}=\dfrac{\pi}{2}$$

    Differentiability at $$x = 0:$$
    LHD at $$x = 0=\displaystyle \lim_{x\rightarrow\,{0}^{-}}{\dfrac{f\left(x\right)-f\left(0\right)}{x-0}}$$ 

    $$=\displaystyle \lim_{x\rightarrow\,{0}^{-}}{\dfrac{{\sin}^{-1}{\left(\cos{\left(0-h\right)}\right)}-\dfrac{\pi}{2}}{-h}}$$

    $$=\displaystyle \lim_{x\rightarrow\,{0}^{-}}{\dfrac{{\sin}^{-1}{\left(\cos{\left(-h\right)}\right)}-\dfrac{\pi}{2}}{-h}}$$ 

    $$=\displaystyle \lim_{x\rightarrow\,{0}^{-}}{\dfrac{{\sin}^{-1}{\left(\cos{h}\right)}-\dfrac{\pi}{2}}{-h}}$$ 

    $$=\displaystyle \lim_{x\rightarrow\,{0}^{-}}{\dfrac{{\sin}^{-1}{\left(\sin{\left(\dfrac{\pi}{2}-h\right)}\right)}-\dfrac{\pi}{2}}{-h}}$$ 

    $$=\displaystyle \lim_{h\rightarrow\,0}\dfrac{-h}{-h}=1$$

    RHD at $$x = 0=\displaystyle \lim_{x\rightarrow\,{0}^{+}}{\dfrac{f\left(x\right)-f\left(0\right)}{x-0}}$$ 

    $$=\displaystyle \lim_{x\rightarrow\,{0}^{+}}{\dfrac{{\sin}^{-1}{\left(\cos{\left(0+h\right)}\right)}-\dfrac{\pi}{2}}{h}}$$

    $$=\displaystyle \lim_{x\rightarrow\,{0}^{+}}{\dfrac{{\sin}^{-1}{\left(\cos{\left(h\right)}\right)}-\dfrac{\pi}{2}}{h}}$$ 

    $$=\displaystyle \lim_{x\rightarrow\,{0}^{+}}{\dfrac{{\sin}^{-1}{\left(\cos{h}\right)}-\dfrac{\pi}{2}}{h}}$$ 

    $$=\displaystyle \lim_{x\rightarrow\,{0}^{+}}{\dfrac{{\sin}^{-1}{\left(\sin{\left(\dfrac{\pi}{2}-h\right)}\right)}-\dfrac{\pi}{2}}{h}}$$ 

    $$=\displaystyle \lim_{h\rightarrow\,0}\dfrac{-h}{h}=-1\\$$
    $$\therefore\,LHD\neq\,RHD$$
    Hence, the function is not differentiable at $$x = 0$$ but is continuous at $$x = 0$$
    Hence option$$(b)$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now