Given:$$f\left(x\right)={\sin}^{-1}{\left(\cos{x}\right)}$$
Continuity at $$x=0$$
We have,LHL at $$x=0$$
$$\displaystyle \lim_{x\rightarrow\,{0}^{-}}{f\left(x\right)}=\displaystyle \lim_{h\rightarrow\,0}{\sin}^{-1}{\left(\cos{\left(0-h\right)}\right)}$$
$$=\displaystyle \lim_{h\rightarrow\,0}{\sin}^{-1}{\left(\cos{h}\right)}$$
$$={\sin}^{-1}{1}=\dfrac{\pi}{2}$$
RHL at $$x=0$$
$$\displaystyle \lim_{x\rightarrow\,{0}^{+}}{f\left(x\right)}=\displaystyle \lim_{h\rightarrow\,0}{\sin}^{-1}{\left(\cos{\left(0+h\right)}\right)}$$
$$=\displaystyle \lim_{h\rightarrow\,0}{\sin}^{-1}{\left(\cos{h}\right)}$$
$$={\sin}^{-1}{1}=\dfrac{\pi}{2}$$
$$f\left(0\right)={\sin}^{-1}{\left(\cos{0}\right)}={\sin}^{-1}{1}=\dfrac{\pi}{2}$$
Differentiability at $$x = 0:$$
LHD at $$x = 0=\displaystyle \lim_{x\rightarrow\,{0}^{-}}{\dfrac{f\left(x\right)-f\left(0\right)}{x-0}}$$
$$=\displaystyle \lim_{x\rightarrow\,{0}^{-}}{\dfrac{{\sin}^{-1}{\left(\cos{\left(0-h\right)}\right)}-\dfrac{\pi}{2}}{-h}}$$
$$=\displaystyle \lim_{x\rightarrow\,{0}^{-}}{\dfrac{{\sin}^{-1}{\left(\cos{\left(-h\right)}\right)}-\dfrac{\pi}{2}}{-h}}$$
$$=\displaystyle \lim_{x\rightarrow\,{0}^{-}}{\dfrac{{\sin}^{-1}{\left(\cos{h}\right)}-\dfrac{\pi}{2}}{-h}}$$
$$=\displaystyle \lim_{x\rightarrow\,{0}^{-}}{\dfrac{{\sin}^{-1}{\left(\sin{\left(\dfrac{\pi}{2}-h\right)}\right)}-\dfrac{\pi}{2}}{-h}}$$
$$=\displaystyle \lim_{h\rightarrow\,0}\dfrac{-h}{-h}=1$$
RHD at $$x = 0=\displaystyle \lim_{x\rightarrow\,{0}^{+}}{\dfrac{f\left(x\right)-f\left(0\right)}{x-0}}$$
$$=\displaystyle \lim_{x\rightarrow\,{0}^{+}}{\dfrac{{\sin}^{-1}{\left(\cos{\left(0+h\right)}\right)}-\dfrac{\pi}{2}}{h}}$$
$$=\displaystyle \lim_{x\rightarrow\,{0}^{+}}{\dfrac{{\sin}^{-1}{\left(\cos{\left(h\right)}\right)}-\dfrac{\pi}{2}}{h}}$$
$$=\displaystyle \lim_{x\rightarrow\,{0}^{+}}{\dfrac{{\sin}^{-1}{\left(\cos{h}\right)}-\dfrac{\pi}{2}}{h}}$$
$$=\displaystyle \lim_{x\rightarrow\,{0}^{+}}{\dfrac{{\sin}^{-1}{\left(\sin{\left(\dfrac{\pi}{2}-h\right)}\right)}-\dfrac{\pi}{2}}{h}}$$
$$=\displaystyle \lim_{h\rightarrow\,0}\dfrac{-h}{h}=-1\\$$
$$\therefore\,LHD\neq\,RHD$$
Hence, the function is not differentiable at $$x = 0$$ but is continuous at $$x = 0$$
Hence option$$(b)$$ is correct.