Self Studies

Continuity and Differentiability Test - 48

Result Self Studies

Continuity and Differentiability Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$f(x)=\begin{cases} x\left( \dfrac { a{ e }^{ \frac { 1 }{ \left| x \right|  }  }+3{ e }^{ \frac { -1 }{ x }  } }{ \left( a+2 \right) { e }^{ \frac { 1 }{ \left| x \right|  }  }-{ e }^{ \frac { -1 }{ x }  } }  \right),\ \ x\neq 0  \\ 0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=0 \end{cases}$$ is differentiable at $$x=0$$ then $$[a]=......$$ ($$[\ ]$$ denotes greatest integer function)
  • Question 2
    1 / -0
    If $$y = {\cot ^{ - 1}}\left( {\frac{{\sin x}}{{1 + \cos x}}} \right)$$ then $$\frac{{dy}}{{dx}}$$ is 
    Solution

  • Question 3
    1 / -0
    let f be the differeniable at x=0 and f'(0)=1 then $$\underset { b\rightarrow 0 }{ lim } \frac { f(h)-f(-2h) }{ h } $$
  • Question 4
    1 / -0
    If  $$f$$  is twice differentiable such that   $$f ^ { \prime \prime } ( x ) = - f ( x )$$  and  $$f ^ { \prime } ( x ) = g ( x ).$$  If  $$h ( x )$$  is a twice differentiable function that  $$h ^ { \prime } ( x ) = ( f ( x ) ) ^ { 2 } + ( g ( x ) ) ^ { 2 } .$$  If  $$h ( 0 ) = 2 , h ( 1 ) = 4 ,$$  then the equation  $$y = h ( x )$$  represents :
    Solution

  • Question 5
    1 / -0
    Number of points in $$[0,\pi]$$, where $$f(x)=\left[\dfrac{x\tan{x}}{\sin{x}+\cos{x}}\right]$$ is non-differentiable is/are (where $$[.]$$ denotes the greatest integer function)
    Solution

  • Question 6
    1 / -0
    Solve : $$\dfrac { d } { d x } \left[ \tan ^ { - 1 } \sqrt { 1 + x ^ { 2 } } - \cot ^ { - 1 } \left( - \sqrt { 1 + x ^ { 2 } } \right) \right] =?$$
    Solution

  • Question 7
    1 / -0
    if the function $$f(x)=\begin{cases} a+{\sin}^{-1}(x+b),\,x\geq 1 \\ x,\,x<1 \end{cases}$$ is differentiable at $$x=1$$, then $$\displaystyle \frac{a}{b}$$ is equal to 
  • Question 8
    1 / -0
    If $$y=e^{\sin^{-1}(t^{2}-1)}$$ & $$x=e^{\sec^{-1}\left (\frac{1}{t^{2}-1}\right)}$$, then $$\dfrac{dy}{dx}$$ is equal to
    Solution

  • Question 9
    1 / -0
    The function $$f(x) = \dfrac {x}{1 + |x|}$$ is differentiable at which of the following?
    Solution

  • Question 10
    1 / -0
    Let F(x) = $$\left( f\left( x \right)  \right) ^{ 2 }+\left( f\left( x \right)  \right) ^{ 2 },F\left( 0 \right) -6$$ where f(x) is a differential  function such that $$\left| f\left( x \right)  \right| \le 1\forall x\notin \left[ -1,1 \right] $$ then choose the correct statement (s)
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now