Self Studies
Selfstudy
Selfstudy

Electric Charges and Fields Test - 70

Result Self Studies

Electric Charges and Fields Test - 70
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Two non-conducting plates $$A$$ and $$B$$ of radii $$2R$$ and $$4R$$ respectively are kept at distances $$x$$ and $$2x$$ from the point charge $$q$$. A surface cutout of a non conducting shell $$C$$ is kept such that its centre coincides with the point charge. Each plate and the spherical surface carries a surface charge density $$\sigma$$. If $$\phi_{1}$$ is flux through surface of $$(B)$$ due to electric field of $$(A)$$ and $$\phi_{2}$$ be the flux through $$(A)$$ due to electric field of $$(B)$$ then:

    Solution
    From the defination of flux,
    $$\phi=E\cdot dA$$
    or, $$\phi= E(A)$$
    where, $$A$$ is the area of surface.
    Now, according to question,
    $$\phi _1:$$ Flux through $$B$$ due to $$A$$
    So, $$E$$ due to $$A=\cfrac{\sigma}{2\varepsilon_o}$$ (Non- conducting charge sheet)
    $$\Rightarrow \phi_1=E$$ (Area of $$B$$)
    $$\Rightarrow \phi_1=\cfrac{\sigma}{\varepsilon_o}(\pi 4R^2)=\cfrac{2\sigma \pi R^2}{\varepsilon_o}$$
    Similarly for $$\phi_2$$: Flux through $$A$$ due to $$B$$,
    $$E$$ due to $$B=\cfrac{\sigma}{2\varepsilon_o}$$
    $$\Rightarrow \phi_2=E$$ (Area of $$A$$) 
    $$\Rightarrow \phi_2=\cfrac{\sigma}{2\varepsilon_o}\left[16R^2\pi\right]=\cfrac{8\sigma \pi R^2}{\varepsilon_2}$$
    So, $$\phi_2>\phi_1$$
  • Question 2
    1 / -0
    A point charge $$Q(C)$$ is placed at the origin. Find the electric flux of which  an area $$4\pi\ m^2$$ on a concentric spherical shell of radius $$R$$ 
    Solution
    From Gauss law,
           $$\phi =\dfrac { { Q }_{ inc } }{ { \varepsilon  }_{ 0 } } $$
    For a spherical shell
    $$\rightarrow $$  flux through an area of $${ 4\pi r }^{ 2 }$$
    $${ m }^{ 2 }=\dfrac { Q }{ { \varepsilon  }_{ 0 } } $$
    $$\rightarrow $$  Flux through 1 $${ m }^{ 2 }$$ area $$=\dfrac { Q }{ 4\pi { R }^{ 2 }{ \varepsilon  }_{ 0 } } $$
    Also flux through $$4\pi { m }^{ 2 }=\dfrac { 4\pi Q }{ 4\pi { R }^{ 2 }{ \varepsilon  }_{ 0 } } =\dfrac { Q }{ { R }^{ 2 }{ \varepsilon  }_{ 0 } } $$
    $$\therefore $$  we can conclude that flux through an area of $$4\pi { m }^{ 2 }$$ on a shell is given by $$=\dfrac { Q }{ { R }^{ 2 }{ \varepsilon  }_{ 0 } } $$

    $$\therefore $$ Option (A) is the correct answer.
  • Question 3
    1 / -0
    Force$$ = F,$$ When a dielectric rod is placed between charges as shown. new force

    Solution
    $${F_{new}} = \dfrac{1}{{4\pi k{\varepsilon _0}}}\dfrac{{q\left( { - q} \right)}}{{{r^2}}}$$
    $${F_{new}} = \dfrac{{{F_{old}}}}{{{\varepsilon _0}}}$$
    So, $$\boxed{{F_{new}} = {F_{old}}}$$
  • Question 4
    1 / -0
    Two similar very small conducting spheres having charges $$40\,\mu C$$ and $$ - 20\,\mu C$$ are some distance apart. Now they are touched and kept at the same distance. The ratio of the initial to the final force between them is:
    Solution

    Initial force $$=\dfrac { K\left( 40\times { 10 }^{ -6 } \right) \left( -20\times { 10 }^{ -6 } \right)  }{ { r }^{ 2 } } =\dfrac { 8K\times { 10 }^{ -10 } }{ { r }^{ 2 } } N$$
    when they are touched the charge redistrubuted among them & final charge on both of them is average of them.
    $$\Rightarrow \quad $$ Charge on one sphere $$=\left( \dfrac { 40-20 }{ 2 }  \right) =10\mu c$$
                                 $${ 2 }^{ nd }$$ sphere $$=10\mu c$$
    Final force $$=\dfrac { \left( K \right) \left( 10\times { 10 }^{ -6 } \right) \left( 10\times { 10 }^{ -6 } \right)  }{ { r }^{ 2 } } =\dfrac { \left( K \right) \left( { 10 }^{ -10 } \right)  }{ { r }^{ 2 } } $$
    $$\Rightarrow \quad $$ Initial force : Final force $$=8:1$$

  • Question 5
    1 / -0
    Three point charges $${q_1},{q_2}$$ and $${q_3}$$ are taken such that when $${q_1}$$ and $${q_2}$$ are placed close together to form a single point charge, the force on $${q_3}$$ at distance $$L$$ from this combination is a repulsion of $$2$$ unit magnitude. When $${q_2}$$ and $${q_3}$$ are combined, the force on $${q_1}$$, from same distance $$L$$ is of magnitude $$4$$ unit and is attractive. Also $${q_3}$$ and $${q_1}$$ combining exert $$6$$ a force of magnitude $$18$$ unit attractive on $${q_2}$$ from same distance $$L$$, Algebraic ratio of charges $${q_1}, {q_2}$$ and $${q_3}$$ is:
    Solution
    $$\dfrac{{{q_3}\left( {{q_1} + {q_2}} \right)}}{{{L^2}}} = 2$$
    $$\dfrac{{{q_1}\left( {{q_2} + {q_3}} \right)}}{L} =  - 4$$
    $$\dfrac{{{q_2}\left( {{q_1} + {q_3}} \right)}}{{{L^2}}} = 18$$
    $$\dfrac{{{K_1}\left( {{K_1} + 1} \right)}}{{{K_1}\left( {1 + {K_2}} \right)}} = \dfrac{1}{9}$$
    $$\dfrac{{{K_1} + {K_2}}}{{{K_2}\left( {{K_1} + 1} \right)}} =  - 2$$
    $${K_2} = \left( {\dfrac{{{K_1}}}{{8{K_1} + 9}}} \right) = 2$$
    $${q_1}:{q_2}:{q_3} = 1:\dfrac{{ - 6}}{5}:2$$

  • Question 6
    1 / -0
    The flux of the electric field due to charges distributed in a sphere of radius $$5$$ cm is $$10$$ Vm. What will be the electric flux, through a concentric sphere of radius $$10$$ cm ?
    Solution
    Given :- $${ \phi  }_{ A }=10Vm$$
                  $$r=5cm=5\times { 10 }^{ -2 }m$$
    Now, from Gauss law,
              $$\phi =\dfrac { { Q }_{ inc } }{ { \varepsilon  }_{ 0 } } $$
    $$\therefore $$  we can conclude from Gauss law that flux is a quantity which depend on the total charge inside the gaussion surface.

    Now, Initially charge contained is same as finally,
    $$\therefore $$ flux will also be some,
    $$\Rightarrow { \phi  }_{ B }=10Vm$$ through a surface of $$10cm$$

    $$\therefore $$ Option (D) is the correct answer.
  • Question 7
    1 / -0
    The electric flux emerging through the closed surface $${S_1}$$ shown in figure which intersects the spherical conductor $$S,$$ due to the presence of a positive charge very near to conductor is:

    Solution

    As you see, due to $$+q$$ charge a $$-ve$$ charge will induce on the surface of conductor which is near to the charge.
    But there will be a positive charge also induced on the other side and our gaussion surface will thus have positive charge enclosed in it.
    $$\Rightarrow \quad \phi =\dfrac { +q }{ { \varepsilon  }_{ 0 } } $$    {positive flux}

    $$\therefore $$  Option A is the correct answer.

  • Question 8
    1 / -0
    A number of spherical conductors of different radii are changed to same potential. The surface charge density of each conductor is related with its radius as
    Solution
    $$\sigma=\cfrac{q}{A}\,\,\,\,\sigma=\cfrac{q}{4\pi r^{2}}$$(as sphere).
    $$v=\cfrac{q}{4\pi\epsilon_{0}r}=\cfrac{\sigma r}{\epsilon_{0}}$$
    $$\therefore \sigma=\cfrac{v\epsilon_{0}}{r}$$(As $$v$$ is constant).
    $$\therefore \sigma\propto\cfrac{1}{r}$$
  • Question 9
    1 / -0
    Three infinitely charged sheets are kept parallel to $$x-y$$ plane having charge densities as shown. Then the  value of electric field at $$'P'$$ is:

    Solution
    $$E$$ at $$P$$ 
    $$=E_{dw\quad to Z=0}+E_{Z=2a}+E_{Z=3a}$$
    $$=-\cfrac{\sigma}{2\epsilon_o}-\cfrac{2 \sigma}{2\epsilon_o}-\cfrac{1 \sigma}{2\epsilon_o}$$
    $$=-\cfrac{4\sigma}{2\epsilon_o}\hat K$$
    $$=-\cfrac{-2\sigma}{\epsilon_o}\hat K$$
  • Question 10
    1 / -0
    Two point charges placed at a distance r in air expert a force F on each other. The value of distance R at which they experience force $$4F$$ when placed in a medium of dielectric constant $$K = 16$$ is:
    Solution
    Two points charge placed at a distance $$=r$$
    force $$=F$$
    value of distance $$=R$$
    $$F=\dfrac { 1 }{ 4\pi { \epsilon  }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } } $$
    $$4F=\dfrac { 1 }{ 4\pi { \epsilon  }_{ 0 }\times K } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { R }^{ 2 } } $$
    or,  $$F=\dfrac { 1 }{ 4\pi { \epsilon  }_{ 0 }\times 4\times 16 } \times \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { R }^{ 2 } } $$
    or,  $$\dfrac { 1 }{ 4\pi { \epsilon  }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } } $$ $$=\dfrac { 1 }{ 64 } \dfrac { 1 }{ 4\pi { \epsilon  }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { R }^{ 2 } } $$
                              $$=\dfrac { 1 }{ 64 } \left( \dfrac { 1 }{ 4\pi { \epsilon  }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { R }^{ 2 } }  \right) $$
    or,  $$\dfrac { 1 }{ { r }^{ 2 } } =\dfrac { 1 }{ 64 } \times \left( \dfrac { 1 }{ 4\pi { \epsilon  }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { R }^{ 2 } }  \right) $$
    or,  $$\dfrac { 1 }{ { r }^{ 2 } } =\dfrac { 1 }{ 64 } \times \dfrac { 1 }{ { R }^{ 2 } } $$
    $$\dfrac { 1 }{ r } =\dfrac { 1 }{ 8 } \dfrac { 1 }{ R } $$
    or,  $$\boxed { R=\dfrac { r }{ 8 }  } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now