Self Studies

Dual Nature of Radiation and Matter Test - 24

Result Self Studies

Dual Nature of Radiation and Matter Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A proton and an electron are accelerated by the same potential difference. Let $$\lambda_{e}$$ and $$\lambda_{p}$$ denote the de Broglie wavelength of the electron and the proton respectively, then
    Solution
    $$\dfrac{1}{2}mv^{2}=eV$$

    $$mv=\sqrt{2meV}$$

    So de Broglie wavelength

    $$\lambda =\dfrac{h}{mv}$$

    $$\lambda =\dfrac{h}{\sqrt{2meV}}$$

    So  $$\lambda _{e}=\dfrac{h}{\sqrt{2m_{e}eV}}$$

    $$\lambda _{p}=\dfrac{h}{\sqrt{2m_{p}eV}}$$

    So,  $$\lambda _{e}> \lambda _{p}$$
  • Question 2
    1 / -0
    An electron of mass $$9.1\times 10^{-31}$$kg and charge $$1.6\times 10^{-19}$$C is accelerated through a potential difference of 'V' volt. The de Broglie wavelength $$(\lambda )$$ associated with the electron is
    Solution
    $$\dfrac{1}{2}mv^{2}=eV$$
    $$mv=\sqrt{2meV}$$
    Now  $$\lambda =\dfrac{h}{mv}$$
            $$=\dfrac{h}{\sqrt{2meV}}$$
             $$=\dfrac{12.27}{\sqrt{V}}A^{0}$$
  • Question 3
    1 / -0
    The energy that should be added to an electron to reduce its de-Broglie wavelength from 1nm to 0.5nm is
    Solution

    $$\dfrac{1}{2}mv^{2}=E$$

    $$mv=\sqrt{2Em}$$

    $$\lambda =\dfrac{h}{mv}$$

    $$=\dfrac{h}{\sqrt{2Em}}$$

    $$\lambda _{1}=\dfrac{h}{\sqrt{2E_{1}m}}$$

    $$\lambda _{2}=\dfrac{h}{\sqrt{2E_{2}m}}$$

    Given, $$\lambda_{1}=2\lambda_{2}$$

    $$\dfrac{h}{\sqrt{2E_{1}m}}=2\dfrac{h}{\sqrt{2E_{2}m}}$$

    $$\dfrac{1}{E_{1}}=\dfrac{4}{E_{2}}$$

    $$E_{2}=4E_{1}$$

    $$E_{2}=E_{1}+3E_{1}$$

  • Question 4
    1 / -0
    If an electron and a proton have the same kinetic energy, the ratio of the de Broglie wavelengths of proton and electron would approximately be :
    Solution
    $$E= \dfrac{1}{2}mv^2$$

    $$p= mv= \sqrt{2mE}$$ $$= \sqrt{2mqv}$$

    De Broglie wavelength associated with change particle

    $$\lambda = \dfrac{h}{p} = \dfrac{h}{\sqrt{2mE}} = \dfrac{h}{\sqrt{2mq \nu }}$$

    where $$E = \dfrac{1}{2}mv^{2} = K.E,  $$ P is momentum of change

    So, $$\lambda _{P} = \dfrac{h}{\sqrt{2m_{p}E}}$$

    $$\lambda _{e} = \dfrac{h}{\sqrt{2m_{e}E}}$$

    So, $$\dfrac{\lambda _{p}}{\lambda _{e}} = \dfrac{\sqrt{m_{e}}}{\sqrt{m_{p}}}$$

    $$= \sqrt {\dfrac{m_{e}}{m_{p}}}$$

    $$= \sqrt {\dfrac{9.1 \times 10^{-31}}{1.67 \times 10^{-27}}}$$

    $$= \sqrt{5.449 \times 10^{-4}}$$

    $$= 2.33 \times 10^{-2}$$

    $$= 0.0233$$

    $$= \dfrac{1}{43}$$

    So, the answer is option (D).
  • Question 5
    1 / -0
    A particle having a de Broglie wavelength of 1.0 $$A^{0}$$ is associated with a momentum of (given $$h = 6.6 \times 10^{-34}$$ Js)
    Solution
    Momentum of a particle with given de Broglie wavalength 
               $$=\dfrac{h}{\lambda }$$

               $$=\dfrac{6.6\times 10^{-34}}{1\times 10^{-10}}$$

               $$={6.6\times 10^{-24}}\ kg \ m/s$$
    So, the answer is option (C).
  • Question 6
    1 / -0
    The de Broglie wavelength of a molecule of thermal energy KT (K is Boltzmann constant and T is absolute temperature) is given by :
    Solution
    $$\dfrac{1}{2}mv^{2}=KT$$

    $$mv=\sqrt{2mKT}$$

    So de-broglie wavelength

    $$\lambda =\dfrac{h}{mv}$$

    $$\rightarrow\lambda=\dfrac{h}{\sqrt{2mKT}}$$
  • Question 7
    1 / -0
    The magnitude of the De-Broglie wavelength ($$\lambda$$) of an electron (e),proton(p),neutron (n) and $$\alpha $$ - particle ($$\alpha $$ ) all having the same energy of MeV, in the increasing order will follow the sequence:
    Solution
    We know
    $$\dfrac{1}{2}mv^{2}=E$$

    $$mv=\sqrt{2Em}$$

    So    $$\lambda =\dfrac{h}{\sqrt{2Em}}$$

    $$\lambda _{e}=\dfrac{h}{\sqrt{2Em_{e}}}$$

    $$\lambda _{p}=\dfrac{h}{\sqrt{2Em_{p}}}$$

    $$\lambda _{n}=\dfrac{h}{\sqrt{2Em_{n}}}$$

    $$\lambda _{\alpha }=\dfrac{h}{\sqrt{2Em_{\alpha }}}$$

    we know    $$m_{\alpha }> m_{n}> m_{p}> me$$
    So             $$\lambda _{\alpha }< \lambda _{n}< \lambda _{p}< \lambda e$$
  • Question 8
    1 / -0
    The de Broglie wavelength of an electron having 80 eV of energy is nearly 
    ($$1eV=1.6\times10^{-19}J$$ , Mass of electron $$=9\times 10^{-31}kg$$, 
    Planck’s constant $$=6.6\times 10^{-34}$$Js) (nearly)
    Solution
    $$given,\ \dfrac{1}{2}mv^{2}= 80\times 1.6\times 10^{-19}$$

    $$mv=\ \sqrt{2\times 9\times 10^{-3.1}\times 80\times 1.6\times 10^{-19}}$$

    $$\therefore \ \lambda = \dfrac{h}{mv}$$

    $$=\dfrac{6.6\times 10^{34}}{\sqrt{2\times 9\times 10^{-31}\times 80\times 1.6\times 10^{-19}}}$$

    $$=\ 1.4\ A^{0}$$
    So, the answer is option (D).
  • Question 9
    1 / -0
    A particle of mass $$10^{-31}$$ kg is moving with a velocity equal to $$10^{5} ms^{-1}$$. The wavelength of the particle is equal to:
    Solution
    We know that
    $$\lambda =\ \dfrac{h}{mv}$$
    $$\lambda =\ \dfrac{6.63\times 10^{-34}}{10^{-31}\times  10^5}$$
    $$\lambda =6.6\times 16^{-8}m$$
    So, the answer is option (C).
  • Question 10
    1 / -0
    The de-Broglie wavelength of a particle moving with a velocity $$2.25 \times 10^{8}\ m/s$$ is equal to the wavelength of photon. The ratio of kinetic energy of the particle to the energy of the photon is :
    Solution
    $$K_{particle }=\dfrac 12 mv^2$$ also $$\lambda =\dfrac {h}{mv}$$
    $$\Rightarrow K_{particle }=\dfrac 12 \left( \dfrac {h}{\lambda v}\right). v^2=\dfrac {vh}{2\lambda}$$    ...(i)
    $$K_{photon}=\dfrac {hc}{\lambda}$$    ....(ii)
    $$\therefore \dfrac {K_{particle }}{K_{photon}}=\dfrac {v}{2c}=\dfrac {2.25\times 10^8}{2\times 3\times 10^8}=\dfrac 38$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now