Self Studies

Dual Nature of ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$E_{1},E_{2}$$ and $$E_{3}$$ are the kinetic energies of a proton, $$\alpha$$ -particle and deuteron respectively, which all have the same wavelength, then 

  • Question 2
    1 / -0

    If electron is having a wavelength of 100 $$A^{0}$$, then momentum is $$(gm \  cm \ s^{-1})$$ units

  • Question 3
    1 / -0

    The de-broglie wavelength of an electron and the wavelength of a photon are same. The ratio between the energy of the photon and the momentum of the electron is

  • Question 4
    1 / -0

    The wavelength corresponding to a beam of electrons whose kinetic energy is 100 eV is 
    ($$h=6.6\times 10^{-34}$$ Js, $$1eV=1.6\times10^{-19}J$$ J,$$m_{e}= 9.1 \times 10^{-31}$$ kg)

  • Question 5
    1 / -0

    A proton and an alpha particle are accelerated through the same potential difference. The ratio of wavelengths associated with proton and alpha particle respectively is :

  • Question 6
    1 / -0

    A charged particle drops through V volts. Match the de Broglie wavelength for given particles 
     Particle                                                                         $$\lambda\ in\ A^o$$

    a. Electron e. $$\sqrt{\dfrac{0.0817}{V}}$$
     b. Deuteron f. $$\sqrt{\dfrac{0.0102}{V}}$$
     c. $$\alpha$$ particle g. $$\sqrt{\dfrac{150}{V}}$$
     d. Proton h.$$\sqrt{\dfrac{0.0409}{V}}$$
    .

  • Question 7
    1 / -0

    If $$\lambda_{0} $$ is the de Broglie wavelength for a proton accelerated through a potential difference of 100V, the de Broglie wavelength for $$\alpha $$ -particle accelerated through the same potential difference is

  • Question 8
    1 / -0

    If the energy of a particle is reduced to one fourth, then the percentage increase in its de Broglie wavelength will be :

  • Question 9
    1 / -0

    Two particles of masses m and 2m have equal kinetic energies. Their de Broglie wavelengths are in the ratio of 

  • Question 10
    1 / -0

    If the velocity of a particle is increased three times, then the percentage decrease in its de Broglie wavelength will be :

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now