Self Studies

Dual Nature of Radiation and Matter Test - 35

Result Self Studies

Dual Nature of Radiation and Matter Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The green graph and the purple graph pictured below represent the photoelectric effect for two different metals (G and P).
    If electromagnetic radiation of frequency $$11\times 10^{14}Hz$$ strikes both metal surfaces, which of the following statements must be true?

    Solution
    As the frequency of the EM radiation used is greater than the threshold frequency of both the metal P and G, thus electrons will be knocked off both metal surfaces by the radiation.
    Maximum kinetic energy of the photoelectrons         $$K.E_{max} = h\nu - \phi$$
    Also from graph, we can state that work function $$(\phi)$$ of metal P is greater than that of G  i.e  $$\phi_P>\phi_G$$
    $$\implies$$   $$K.E_G{_{max}} > K.E_{P_{max}}$$
    Hence option E is correct.
  • Question 2
    1 / -0
    Calculate the de Brogile wavelength of a photon whose linear momentum has a magnitude of $$3.3 \times 10^{-23}kgm/s$$.
    Solution
    The de Brogile wavelength of a photon is $$\lambda=\dfrac{h}{p}=\dfrac{6.6\times 10^{-34}}{3.3\times 10^{-23}}=2\times 10^{-11}=0.02\times 10^{-9} m=0.02 nm$$
  • Question 3
    1 / -0
    The de Broglie wavelength of a tennis ball of mass $$60$$ g moving with a velocity of $$10$$ m/sec is approximately :
    Solution
    De-Broglie wavelenght is given by:
    $$\lambda=\dfrac{h}{mv}=\dfrac{6.62\times10^{-34}}{60\times10^{-3}\times10} \approx10^{-33}$$ 
  • Question 4
    1 / -0
    The number of De-Broglie wavelengths contained in the second Bohr orbit of Hydrogen atom is
    Solution
    De-broglie wavelength of a particle is given as 
    $$\lambda=\dfrac{h}{mv}$$
    According to the Bohr's postulate,
    $$mvr=\dfrac{nh}{2\pi}$$
    $$\implies 2\pi r=n\dfrac{h}{mv}=n\lambda$$
    Hence there are $$n$$ De-Broglie wavelengths in $$n^{th}$$ Bohr orbit.
    Hence correct answer is option B.
  • Question 5
    1 / -0
    What is the de Broglie wavelength of the electron accelerated through a potential difference of 100 Volt?
    Solution
    Given :    $$V =100$$ volts
    de-Broglie wavelength of electron     $$\lambda = \dfrac{h}{\sqrt{2meV}}$$
    $$\therefore$$    $$\lambda = \dfrac{6.6\times 10^{-34}}{\sqrt{2(9.1\times 10^{-31})(1.6\times 10^{-19})(100)}}$$

    Or     $$\lambda = \dfrac{6.6\times 10^{-34}}{5.4\times 10^{-10}}$$  m
    $$\implies $$   $$\lambda = 1.227\times 10^{-10} m = 1.227$$  $$\mathring{A}$$
  • Question 6
    1 / -0
    Determine de-Broglie wavelength of an electron having kinetic energy of $$1.6 \times 10^{-6}$$ erg.
    Solution
    Debroglie wavelength is given by $$ \lambda = \dfrac {h}{mv}$$
    When KE is given , then   $$ \lambda = \dfrac {h}{{(2m KE)}^{1/2}}$$

    If m= mass of electron in kg , KE in Joules , then answer comes out in Angstrom.
    Mass of electron =$$ 9.1× {10}^{-31}$$ kg
    For conversion use :: 1 Joules = $${10}^{7}$$ erg.
  • Question 7
    1 / -0
    Find the de-Broglie wavelength of an electron with kinetic energy of $$120\ eV$$.
    Solution
    Given :   $$K = 120eV$$     

    Mass of electron    $$m = 9.1\times 10^{-31}$$   kg 
       
    de-Broglie wavelength      $$\lambda=  \dfrac{h}{\sqrt{2mK}}$$

    $$\therefore$$      $$\lambda=  \dfrac{6.6\times 10^{-34}}{\sqrt{2\times 9.1\times 10^{-31}\times 120 \times 1.6\times 10^{-19}}}$$

    Or    $$\lambda = \dfrac{6.6\times 10^{-34}}{59.1\times 10^{-25}} = 0.112\times 10^{-9}$$ $$m = 112$$  $$pm$$
  • Question 8
    1 / -0
    If the momentum of an electron is increased by $${ P }_{ m }$$ then the de Broglie wavelength associated with it changes by $$0.5$$%. Then the initial momentum of the electron is
    Solution
    The De broglie wavelength $$\lambda$$ and momentum $$p$$ of a particle are related by ,
                    $$p=\dfrac{h}{\lambda}$$
    as  $$p\propto 1/\lambda$$ , therefore , with increase in momentum , wavelength will decrease .
    Initially ,     $$p=\dfrac{h}{\lambda}$$  ................eq1
    Now the wavelength is decreased by 0.5% ,
                     $$\lambda'=\lambda-\lambda\times0.5/100=199\lambda/200$$
    hence , increased momentum ,
                     $$p+p_{m}=\dfrac{h}{\lambda'}$$
    or              $$p+p_{m}=\dfrac{200h}{199\lambda}$$  ............eq2
    dividing eq2 by eq1 , we get
                     $$\dfrac{p+p_{m}}{p}=\dfrac{200}{199}$$
    or              $$199p+200p_{m}=200p$$  
    or              $$p=200p_{m}$$
  • Question 9
    1 / -0
    If a surface has a work function $$4.0 eV$$, what is the maximum velocity of electrons liberated from the surface when it is irradiated with ultraviolet radiation of wavelength $$0.2\mu m$$?
    Solution
    Given :    $$\phi = 4eV$$             $$\lambda = 0.2\mu m = 200$$ $$nm$$
    Using         $$K.E_{max} = \dfrac{hc}{\lambda} -\phi$$                where $$K.E_{max} = \dfrac{1}{2}mv^2$$ and  $$hc =1240$$ $$eV$$
    $$\therefore$$     $$K.E_{max} = \dfrac{1240}{200} -4 = 2.2 eV = 2.2\times 1.6\times 10^{-19} = 3.53\times 10^{-19}$$  $$J$$
    Maximum velocity    $$v =\sqrt{\dfrac{2K.E_{max}}{m}}$$
    $$\therefore$$   $$v = \sqrt{\dfrac{2\times 3.52\times 10^{-19}}{9.1\times 10^{-31}}} = 8.8\times 10^5$$  $$m/s$$
  • Question 10
    1 / -0
    The de Broglie wavelength of an electron (mass = $$1 \times 10^{-30}$$ kg, charge = $$1.6 \times 10^{-1} C$$) with a kinetic energy of 200 eV is (Planck's constant = $$6.6 \times 10^{-34} J s$$)
    Solution
    Given :   $$m=1\times 10^{-30}$$ kg           $$e =1.6\times 10^{-19} C$$             $$h =6.6\times 10^{-34} Js$$
    Kinetic energy     $$K =200eV$$
    de Broglie wavelength      $$\lambda = \dfrac{h}{\sqrt{2mK}} =\dfrac{h}{\sqrt{2m (200) e}}$$
    $$\therefore$$   $$\lambda = \dfrac{6.6\times 10^{-34}}{\sqrt{2(10^{-30}) (200) (1.6\times 10^{-19})}}$$

    OR    $$\lambda = \dfrac{6.6\times 10^{-34}}{8\times 10^{-24}}  $$             $$\implies$$   $$\lambda = 8.25\times 10^{-11} m$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now