Self Studies

Dual Nature of Radiation and Matter Test - 39

Result Self Studies

Dual Nature of Radiation and Matter Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If an electron and a proton have the same de-Broglie wavelength, then the kinetic energy of the electron is :
    Solution
    de Broglie wavelength  $$\lambda = \dfrac{h}{\sqrt{2mK}}$$

    We get  $$K = \dfrac{h^2}{2m \lambda^2}$$

    $$\implies$$  $$K\propto \dfrac{1}{m}$$

    We know that  $$m_p > m_e$$

    $$\therefore$$   $$\dfrac{K_e}{K_p} = \dfrac{m_p}{m_e} >1$$

    $$\implies$$ $$K_e > K_p$$
  • Question 2
    1 / -0
    If alpha particle, proton and electron move with the same momentum, then their respective de-Broglie wavelengths $${ \lambda  }_{ \alpha  },{ \lambda  }_{ p },{ \lambda  }_{ e }$$ are related as
    Solution
    Wavelength $$\lambda =\dfrac { h }{ p } $$
    Since, momentum is same for all particles.
    So, wavelength will be same for all
    i.e., $${ \lambda  }_{ \alpha  }={ \lambda  }_{ p }={ \lambda  }_{ e }$$
  • Question 3
    1 / -0
    If alpha particle and deutron move with velocity $$v$$ and $$2v$$ respectively, the ratio of their de-Broglie wavelength will be _____
    Solution
    Key Concept According to de-Broglie wavelength, the wave associated with moving particle is given by
    $$\lambda = \dfrac {h}{mv}$$
    where, $$m$$ and $$v$$ are the mass and velocity of the particle and $$h$$ is Planck's constant.
    de-Broglie wavelength of a particle, is given as
    $$\lambda = \dfrac {h}{P}\Rightarrow \lambda \propto \dfrac {1}{P}$$
    $$\Rightarrow \dfrac {\lambda_{1}}{\lambda_{2}} = \dfrac {P_{2}}{P_{1}}$$ or $$\dfrac {\lambda_{\alpha}}{\lambda_{D}} = \dfrac {P_{D}}{P_{1}}$$
    $$\Rightarrow \dfrac {\lambda_{\alpha}}{\lambda_{D}} = \dfrac {2\times 2v}{4\times 2v} = \dfrac {4v}{4v}$$
    $$\therefore \lambda_{\alpha} : \lambda_{D} = 1 : 1$$.
  • Question 4
    1 / -0
    If the kinetic energy of free electron is made double; the new de-Broglie wavelength will be __________ times that of initial wavelength.
    Solution
    We know that
    de-Broglie wavelength $$\lambda =\dfrac { h }{ p } $$
    $$\lambda =\dfrac { h }{ mv } $$
    If $$K$$ be the kinetic energy of the electron, then
    $$K=\dfrac { 1 }{ 2 } m{ v }^{ 2 }$$
    $$v=\sqrt { { 2K }/{ m } } $$
    So, de-Broglie wavelength is
    $$\lambda =\dfrac { h }{ \sqrt { 2mK }  } $$
    $$\lambda \propto \dfrac { 1 }{ \sqrt { K }  } $$
    $$\therefore { \lambda  }_{ 1 }=\dfrac { 1 }{ \sqrt { { K }_{ 1 } }  } $$               ....(i)
    $${ \lambda  }_{ 2 }=\dfrac { 1 }{ \sqrt { 2{ K }_{ 1 } }  } $$                  ....(ii)
    $$\dfrac { { \lambda  }_{ 2 } }{ { \lambda  }_{ 1 } } =\dfrac { { 1 }/{ \sqrt { 2{ K }_{ 1 } }  } }{ { 1 }/{ \sqrt { { K }_{ 1 } }  } } $$
    $$\dfrac { { \lambda  }_{ 2 } }{ { \lambda  }_{ 1 } } =\dfrac { 1 }{ \sqrt { 2 }  }$$
    So, the new de-Broglie wavelength will be $$\dfrac { 1 }{ \sqrt { 2 }  } $$ times that of initial wavelength.
  • Question 5
    1 / -0
    De-Broglie wavelength of a body of mass $$1$$kg moving with velocity of $$2000 \>$$m$$/$$s is?
    Solution
    de Broglie wavelength  $$\lambda \displaystyle =\frac{h}{mv}=\frac{6.6\times 10^{-34}}{1\times 2000}$$
    $$=3.3\times 10^{-37}m=3.3\times 10^{-27}\overset{o}{A}$$.
  • Question 6
    1 / -0
    A body of mass $$100 g$$ moves at the speed of $$36 { km }/{ h }$$. The de-Broglie wavelength related to it is of the order _________ $$m$$.
    $$\left( h=6.626\times { 10 }^{ -34 }Js \right) $$
    Solution
    Given, $$m=100 g=0.1 kg$$
    $$v=36{ km }/{ h }=36\times \dfrac { 5 }{ 18 } { m }/{ s }=2\times 5=10{ m }/{ s }$$
    $$h=6.626\times { 10 }^{ -34 }Js$$
    We know that
    $$\lambda =\dfrac { h }{ mv } $$         $$\left( \because p=\dfrac { h }{ \lambda  } \quad and\quad p=mv \right) $$
      $$=\dfrac { 6.626\times { 10 }^{ -34 } }{ 0.1\times 10 } $$
    $$\lambda =6.626\times { 10 }^{ -34 }m$$
    So, the de-Broglie wavelength related to it is of the order $${ 10 }^{ -34 }m$$
  • Question 7
    1 / -0
    In photoelectric effect the slope of straight line graph between stopping potential $$4(V_0)$$ and frequency of incident light (V) gives:

    Solution
    We know that
    By photoelectric equation we have
    $$h\nu=h{\nu}_{o}+K.E$$
    $$h\nu=W+e{V}_{o} \rightarrow$$shapping potential
    $$e{V}_{o}=h\nu-W \Rightarrow {V}_{o}=\left( \cfrac{h}{e} \right)\nu+\left( \cfrac {-W}{e} \right)$$
    $$y=mx+C$$
    Compairing two equation $$\Rightarrow m=\cfrac {h}{c}$$
    Slope is ratio of planck's constant to charge of electrons
  • Question 8
    1 / -0
    The de-Broglie wavelength of a neutron at $${ 27 }^{ o }C$$ is $$\lambda $$. What will be its wavelength at $${ 927 }^{ o }C$$?
    Solution
    $$\quad { \lambda  }_{ neutron }\propto \cfrac { 1 }{ \sqrt { T }  } \Rightarrow \cfrac { { \lambda  }_{ 1 } }{ { \lambda  }_{ 2 } } =\sqrt { \cfrac { { T }_{ 2 } }{ { T }_{ 1 } }  } $$

    $$\Rightarrow \cfrac { { \lambda  }_{ 1 } }{ { \lambda  }_{ 2 } } =\sqrt { \cfrac { (273+927) }{ (273+27) }  } =2\Rightarrow { \lambda  }_{ 2 }=\cfrac { \lambda  }{ 2 } $$
  • Question 9
    1 / -0
    A particle is dropped from a height H. The de-Broglie wavelength of the particle as a function of height is proportional to
    Solution
    Velocity acquired by a particle while talling from a height m is, $$\displaystyle v= \sqrt{2gH}$$
    Thus, as, $$\displaystyle \lambda = \frac{h}{mv} = \frac{h}{m \sqrt{2gH}}$$
    or $$\displaystyle \lambda \propto H^{-1/2}$$
  • Question 10
    1 / -0
    The de-Broglie wavelength of an electron and the wavelength of a photon are the same. The ratio between the energy of that photon and the momentum of that electron is (c =velocity of light, h= Planck's constant)
    Solution
    We have $$\lambda_e=\dfrac {h}{mv}$$
    and $$\lambda_p=\dfrac {h}{mc}$$
    According to the question,
    $$\lambda_e=\lambda_p$$
    $$\therefore   v=c$$
    $$\dfrac {E_p}{P_e} =\dfrac {mc^2}{mv}= \dfrac {c^2}{c}= c$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now