Self Studies

Dual Nature of Radiation and Matter Test - 40

Result Self Studies

Dual Nature of Radiation and Matter Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The speed of an electron having a wavelength of $${ 10 }^{ -10 }m$$ is
    Solution
    We have
    $$\lambda =\cfrac { h }{ p } =\cfrac { h }{ mv } $$
    $$\Rightarrow v=\cfrac { h }{ m\lambda  } =\cfrac { 6.63\times { 10 }^{ -34 } }{ 9.1\times { 10 }^{ -31 }\times { 10 }^{ -10 } } =7.25\times { 10 }^{ 6 }m/s\quad $$
  • Question 2
    1 / -0
    An electron in an electron microscope with initial velocity $$v_0i$$ enters a region of a stray transverse electric field $$E_0j$$. The time taken for the change in its de Broglie wavelength from the initial value of $$\lambda$$ to $$\dfrac{\lambda}{3}$$ is proportional to.
    Solution
    Path traced by the electron is shown in the figure such that electron reaches the point P when its de Broglie wavelength becomes $$\dfrac{\lambda}{3}$$.
    Acceleration of electron is zero in x direction.
    Acceleration of electron in y direction  $$a' = \dfrac{eE_o}{m}$$
    Velocity of electron initially    $$v_o = \dfrac{h}{\lambda}$$
    At P,   $$v_p = \dfrac{h}{(\lambda/3)} = 3v_o$$
    So, velocity is y direction  $$v' = \sqrt{(v')^2 - v_o^2} = \sqrt{9v_o^2-v_o^2} = 2\sqrt{2}v_o$$
    Using   $$v' =a't$$
    $$\therefore$$  $$2\sqrt{2}v_o = \dfrac{eE_o}{m}t$$
    We get  $$t = \dfrac{2\sqrt{2}v_o m}{eE_o}$$
    $$\implies  \ t\propto \dfrac{1}{E_o}$$

  • Question 3
    1 / -0
    If the linear momentum of a particle is $$2.2 \times 10^4\, kg\, ms^{-1}$$, then what will be its de-Broglie wavelength ? (Take hr. $$6.6 \times 10^{-34}\, Js$$) 
    Solution
    Given, the linear momentum of aparticular (p)
    $$= 2.2 \times 10^4\, kg \, ms^{-1}$$
    $$h= 6.6 \times 10^{-34} \, Js$$
    The de-Broglie wavelength of particle
    $$\lambda =\dfrac {h}{p}$$
    $$\lambda =\dfrac {6.6 \times 10^{-34}}{2.2 \times 10^4}$$
    or $$ \lambda = 3\times 10^{-38}\, m$$
    or $$ \lambda = 3\times 10^{-29}\, nm$$
  • Question 4
    1 / -0
    The wavelength $$\lambda$$ of a photon and the de-Broglie wavelength of an electron have the same value. Find the ratio of energy of photon of the kinetic energy of electron in terms of mass m, speed of light c and planck constant.
    Solution
    The de-Broglie wavelength
    $$h=\displaystyle\frac{h}{mv}\Rightarrow v=\frac{h}{m\lambda}$$ .........(i)
    Energy of photon
    $$E_p=\displaystyle\frac{hc}{\lambda}$$(since $$\lambda$$ is same)    ...........(ii)
    Energy of Photon
    Kinetic energy of photon $$=\displaystyle\frac{E_p}{E_e}=\frac{hc/\lambda}{\displaystyle\frac{1}{2}1mu^2}=\frac{2hc}{\lambda mv^2}$$
    Substituting value of v from Eq. (i), we get
    $$\displaystyle\frac{E_p}{E_e}=\frac{2hc}{\lambda_m\left(\displaystyle\frac{h}{m\lambda}\right)^2}=\frac{2\lambda mc}{h}$$.
  • Question 5
    1 / -0
    The energy of a $$K$$-electron in tungsten is $$-20keV$$ and of an $$L$$-electrons is $$-2keV$$. The wavelength of X-rays emitted when there is electron jump from $$L$$ to $$K$$ shell:
    Solution
    A
    $$E_{L} = - 2KeV =-2×10^{3}×1.6×10^{-19}J$$
    $$E_{K} = - 20KeV =-20×10^{3}×1.6×10^{-19}J$$
    The energy of the x-ray photon is given as
    $$E = E_{L}-E_{K}= hv =\dfrac{hc}{\lambda }$$
    Or, $$\lambda = \dfrac{hc}{E_{L}-E_{K}} =\dfrac{6.62×10^{-34}×3×10^{8}}{18×10^{3}1.6×10^{-19}}m = 0.6887\dot{A}  $$
  • Question 6
    1 / -0
    An electron and a photon have same wavelength of $$10^{-9}$$m. If E is the energy of the photon and p is the momentum of the electron, the magnitude of E/p in SI units is?
    Solution
    Given:-
    Wavelength of photon & electron are equal
                $$ \Rightarrow { \lambda  }_{ p }={ \lambda  }_{ e }={ 10 }^{ -9 }m$$
                     $$ E$$=Energy of photon
                     $$ P$$= Momentum of electron
    Solution:-
                   From Planck's equation
                      $$ E=\cfrac { hc }{ { \lambda  }_{ p } } \Rightarrow  { \lambda  }_{ p }=\cfrac { hc }{ E } $$
                   From de-broglie's equation
                       $$ { \lambda  }_{ e }=\cfrac { h }{ p }$$
     Since          $$ { \lambda  }_{ p }={ \lambda  }_{ e }\\ \Rightarrow \cfrac { hc }{ E } =\cfrac { h }{ p }$$
                       $$ \Rightarrow \cfrac { E }{ p } =C=3\times { 10 }^{ 8 }$$
  • Question 7
    1 / -0
    A particle is projected horizontally with a velocity $$10\ m/s$$. What will be the ratio of de-Broglie wavelengths of the particle, when the velocity vector makes an angle $$30^{\circ}$$ and $$60^{\circ}$$ with the horizontal?
    Solution
    Given:-$${ V }_{ 1 }=10{ m }/{ s }$$

    Solution:-

    Velocity when velocity vector makes $${30}^{o}$$ with

     horizontal,$${ V }_{ 2 }={ V }_{ 1 }\times \cos{ 30 }^{o}$$

              $$ ={ V }_{ 1 }\times \cfrac { \sqrt { 3 }  }{ 2 } $$

              $${ V }_{ 2 }=\cfrac { 10\sqrt { 3 }  }{ 2 } =5\sqrt { 3 } { m }/{ s }$$

     Velocity when velocity vector makes $$ { 60 }^{o}$$ with

     horizontal,$${ { V }_{ 3 } }={ V }_{ 1 }\cos{ 60 }^{ o  }$$

               $$ { V }_{ 3 }={ V }_{ 1 }\times \cfrac { 1 }{ 2 }$$

               $${ V }_{ 3 }=10\times \cfrac { 1 }{ 2 } $$

               $$ { V }_{ 3 }=5{ m }/{ s }$$

    $$\therefore$$  Ratio of wavelength is:-

               $$\sqrt { 3 } :1$$
  • Question 8
    1 / -0
    A charged particle is accelerated from rest through a certain potential difference. The de Broglie wavelength is $${ \lambda  }_{ 1 }$$ when it is accelerated through $${V}_{1}$$ and is $${ \lambda  }_{ 2 }$$ when accelerated through $${V}_{2}$$. The ratio $${ \lambda  }_{ 1 }/{ \lambda  }_{ 2 }$$ is
    Solution
    de Broglie wavelength is given by  $$\lambda = \dfrac{h}{p}$$
    where momentum  $$ p  = \sqrt{2mK} $$  and kinetic energy $$K =qV$$
    $$\implies \ \lambda = \dfrac{h}{\sqrt{2mqV}}$$
    We get   $$\lambda \propto \dfrac{1}{\sqrt{V}}$$
    $$\implies\  \lambda_1:\lambda_2  = V_2^{1/2}:V_1^{1/2}$$
  • Question 9
    1 / -0
    An electron of mass m and a photon have same energy E.Find out the ratio of de-Brogile wavelength associated with them is (c- velocity of light)
    Solution

  • Question 10
    1 / -0
    Einstein's photoelectric equation is?
    Solution
    Photoelectrons from the metal surface are emitted when a light having frequency greater than the threshold frequency of the metal surface is incident on it.
    Maximum kinetic energy of the emitted photo electrons is given by     $$E_{max} = h\nu - \varphi_o$$
    where $$\nu$$ is the frequency of incident light and $$\varphi_o$$ is the work function of metal surface.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now