Self Studies

Dual Nature of Radiation and Matter Test - 42

Result Self Studies

Dual Nature of Radiation and Matter Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A proton, a neutron, an electron and an $$\alpha$$-particle have same energy. Then their de Broglie wavelengths compare as :
    Solution
    Kinetic energy of particle, $$K = \dfrac{1}{2}mv^2 \,\,\,\, or \,\,\,\,\, mv = \sqrt{2mK}$$

    de Broglie wavelength, $$\lambda = \dfrac{h}{mv} = \dfrac{h}{\sqrt{2mK}}$$

    For the given value of $$K, \lambda \alpha \dfrac{1}{\sqrt{m}}$$

    $$\therefore \lambda_p : \lambda_n : \lambda_e : \lambda_{\alpha} = \dfrac{1}{\sqrt{m_p}} : \dfrac{1}{\sqrt{m_n}}: \dfrac{1}{\sqrt{m_e}} :\dfrac{1}{\sqrt{m_\alpha}}$$

    Since $$m_p = m_n, \,\, hence\,\, \lambda_p = \lambda_n$$

    $$ As\ m_{\alpha} > m_p, \,\, therefore \,\, \lambda_{alpha} < \lambda_p$$

    As $$m_e < m_n, therefore \lambda_n < \lambda_n$$

    Hence $$ \lambda_{alpha} < \lambda_p = \lambda_n < \lambda_e$$
  • Question 2
    1 / -0
    Which of these particles having the same kinetic energy has the largest de Broglie wavelength?
    Solution
    As $$\lambda = \dfrac{h}{\sqrt{2mK}} \, so \, \lambda \propto \dfrac{1}{\sqrt{m}}$$

    Out of the given particles m is least for electron, therefore electron has the largest value of de Broglie wavelength.
  • Question 3
    1 / -0
    When the velocity of an electron increases, its de Broglie wavelength:
    Solution
    $$\lambda _D =\dfrac{h}{P} =\dfrac{h}{mv}$$

    $$\lambda _D \propto \dfrac{1}{v}$$
    velocity of an electron increases, its de Broglie wavelength decreases.
    Option B
  • Question 4
    1 / -0
    If h is Plancks constant, the momentum of a photon of wavelength 0.01 $$A^o$$ is
    Solution
    Momentum of photo, $$p = \dfrac{E}{c} = \dfrac{h\nu}{c}$$where E is the energy of a photon and c is the velocity of light. 

    $$\therefore$$ $$p = \dfrac{hc}{c\lambda}$$   $$\,\,\,\,$$ $$\left[\because \nu=\dfrac{c}{\lambda}\right]$$

    $$p=\dfrac{h}{\lambda} = \dfrac{h}{0.01\times 10^{-10}} = 10^{12}h$$
  • Question 5
    1 / -0
    A particle of mass $$4m$$ at rest decays into two particles of masses $$m$$ and $$3m$$ having non-zero velocities. The ratio of the de Broglie wavelengths of the particles 1 and 2 is:
    Solution
    According to law of conservation of linear momentum, two particles will have equal and opposite momentum. 
    The de Broglie wavelength is given by 

    $$\lambda = \dfrac{h}{p} \, \, \, \, \therefore \dfrac{\lambda_1}{\lambda_2} = 1$$
  • Question 6
    1 / -0
     Find the wavelength of the incident light if the stopping potential is 0.6 V.
    Solution
    According to Einstein's photoelectric equation 
    $$eV_0 = h\upsilon - \phi_0 = \dfrac{hc}{\lambda} - \phi_0$$          $$\left (\because  \upsilon = \dfrac{c}{\lambda}  \right )$$ 

    $$eV_0 =  \dfrac{hc}{\lambda} - \phi_0$$ 

    or  $$\lambda = \dfrac{hc}{(eV_0 + \phi_0)} = \dfrac{1242eV nm}{(0.6 + 2.14)eV} = 454nm$$
  • Question 7
    1 / -0
    Relativistic corrections become necessary when the expression for the kinetic energy $$\dfrac{1}{2} mv^2$$, becomes comparable with $$mc^2$$, where m is the mass of the particle. At what de Broglie waxelength will relativistic corrections become important for an electron?
    Solution
    We know that the de Broglie's equation is written as:
    $$p=\dfrac{h}{\lambda}$$
    $$mv=\dfrac{h}{\lambda}$$
    velocity of electrn, $$v = \dfrac{h}{(m\lambda)}$$

    The value of plank's constant is $$h = 6.6\times 10^{-34}Js$$ 
    and the mass of the electron is $$m = 9 \times 10^{-31}kg$$

    $$(a) $$
    For $$\lambda_1 = 10nm  = 10^{-8}m$$

    $$v_1 = \dfrac{6.6\times 10^{-34}}{(9\times 10^{-31})\times 10^{-8}} $$

    $$= \dfrac{2.2}{3} \times 10^5 \approx 10^5m/s$$

    $$(b)$$
    For $$\lambda_2 = 10^{-1}nm =  10^{-10}m$$

    $$v_2 = \dfrac{6.6\times 10^{-34}}{9\times 10^{-31} \times 10^{-10}}$$
    $$ \approx 10^7 m/s$$

    $$(c)$$
    For $$\lambda_3 = 10^{-4}nm = 10^{-13}m$$

    $$v_3 = \dfrac{6.6\times 10^{-34}}{9\times 10^{-31} \times 10^{-13}}$$
    $$ \approx 10^{10} m/s$$

    $$(d)$$
    For $$\lambda_4 = 10^{-6}nm =  10^{-15}m$$

    $$v_4 = \dfrac{6.6\times 10^{-34}}{9\times 10^{-31} \times 10^{-15}} $$
    $$\approx 10^{12} m/s$$

    Since $$v_3$$ and $$v_4$$ are greater than velocity of light . So, the relativistic correction can occur in these speeds of the electron.

    Thus, option (C) and (d) are required wavelengths.
  • Question 8
    1 / -0
    Consider the four gases hydrogen, oxygen, nitrogen and helium at the same temperature. Arrange them in the increasing order of the de Broglie wavelengths of their molecules.
    Solution
    de Broglie wavelength of a gas molecule $$\lambda = \dfrac{h}{\sqrt{3mk_BT}}$$
    where, T = Absolute temperature
                kg = Boltzmann's constant 
                m = Mass of gas molecule
    For the same temperature $$\lambda \propto \dfrac{1}{\sqrt{m}}$$
    As $$M_0  >  M_N >  M_{He} > M_{H2}$$

    $$\therefore \lambda_O  <  \lambda_N  <  \lambda_{He} <  \lambda_{H2}$$
  • Question 9
    1 / -0
    Two particles $$A_1$$ and $$A_2$$ of masses $$m_1, \, m_2 \, (m_1 \, > \, m_2)$$ have the same de Broglie wavelength. Then
    Solution
    As $$ \lambda = \dfrac{h}{p} \, or \, p = \dfrac{h}{\lambda} \, or \, p \propto \dfrac{1}{\lambda}$$

    $$\therefore \dfrac{p_1}{p_2} = \dfrac{\lambda_2}{\lambda_1} = \dfrac{\lambda}{\lambda} = 1 \, or \, p_1 = p_2$$     ..............(1)

    Also $$ E = \dfrac{1}{2} \dfrac{p^2}{m} = \dfrac{1}{2m} \dfrac{h^2}{\lambda^2} \, \, \, \, \left(\therefore p = \dfrac{h}{\lambda}\right)$$

    or $$ E \propto \dfrac{1}{m} \, \, \therefore \dfrac{E_1}{E_2} = \dfrac{m_2}{m_1} \, < \, 1 \, or \, E_1 \, < \, E_2$$ ................(2)
    From above equation: Option A
  • Question 10
    1 / -0
    The de Broglie wavelength associated with a ball of mass 150 g travelling at 30 m $$s^{-1}$$ is
    Solution
    Mass of the bail, m = 150 g = 0.15 kg.
    speed of the ball, v = 30 $$m \, s^{-1}$$
    Momentum, $$p = mv = 0.15 \, \times \, 30 \, = \, 4.5 kg \, m \,  s^{-1}$$
    de Broglie wavelength, 
    $$\lambda = \dfrac{h}{p} \, = \, \dfrac{6.63 \, \times \, 10^{-34}}{4.5} \, = \, 1.47 \, \times \, 10^{-34} m$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now