Self Studies

Dual Nature of Radiation and Matter Test - 44

Result Self Studies

Dual Nature of Radiation and Matter Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the stationery proton and $$\alpha-$$ particle are accelerated through same potential difference, the ratio of de-Broglie wavelength will be:
    Solution
    The gain in $$K.E$$. of a charge particle after moving through a potential difference of $$V$$ is given as $$eV$$, that is also equal to $$\dfrac{1}{2}\ mv^{2}$$ where $$v$$ is the velocity of the charge particle.
    $$\dfrac{1}{2}\ mv^{2}=qV \quad \Rightarrow \quad v=\sqrt{\dfrac{2qV}{m}}$$
    $$\therefore \quad mv=\sqrt{2mqV}$$
    $$\Rightarrow \quad$$ de-Broglie wavelength $$=\lambda=\dfrac{h}{mv}=\dfrac{h}{\sqrt{2\ mqV}}$$
    $$\therefore \quad \dfrac{\lambda_{p}}{\lambda_{\alpha}}=\sqrt{\dfrac{m_{\alpha} q_{\alpha} V_{\alpha}}{m_{p} q_{p} V_{p}}}$$
    Putting $$V_{\alpha}=V_{p},\dfrac{\lambda_{p}}{\lambda_{\alpha}}=\sqrt{\dfrac{(4)(2)}{(1)(1)}}=2\sqrt{2}$$
    Hence ($$C$$) is correct.
  • Question 2
    1 / -0
    The de-Broglie wavelength of an electron in first orbit of Bohr hydrogen is equal to
    Solution
    The de-Broglie wavelength $$\lambda=\dfrac{h}{mv}$$ . . . . .($$1$$)
    Where the linear momentum of an orbiting electron is given as
    $$mvr=\dfrac{nh}{2\pi}$$ for  first orbit $$n=1$$
    $$\Rightarrow \quad mv=\dfrac{h}{2\pi r}$$ . . . . . ($$2$$)
    Using ($$1$$) and ($$2$$) we obtain
    $$\lambda =\dfrac { h }{ \left( \dfrac { h }{ 2\pi r }  \right)  } =2\pi r$$ where, $$2\pi r=$$ perimeter of the orbit
    Hence ($$B$$) is correct.
  • Question 3
    1 / -0
    If $$E_{1},E_{2}$$ and $$E_{3}$$ represent respectively the kinetic energies of an electron, an $$\alpha-$$particle and a proton each having same de-Broglies wavelength then
    Solution

  • Question 4
    1 / -0
    If the kinetic energy of a free electron doubles, its de Broglie wavelength changes by the factor
    Solution
    $$\lambda =\frac { h }{ mv } $$  and  $$k=\dfrac { 1 }{ 2 } { mv }^{ 2 }=\dfrac { { \left( mv \right)  }^{ 2 } }{ 2m } $$
    $$\Rightarrow mv=\sqrt { 2mk } $$
    So,  $$\lambda =\dfrac { h }{ \sqrt { 2mk }  } $$
    $$\Rightarrow \lambda \sim \dfrac { 1 }{ \sqrt { k }  } $$
    $$\dfrac { { \lambda  }_{ 2 } }{ { \lambda  }_{ 1 } } =\dfrac { \sqrt { { k }_{ 1 } }  }{ \sqrt { { k }_{ 2 } }  } =\dfrac { \sqrt { { k }_{ 1 } }  }{ \sqrt { { 2k }_{ 1 } }  } $$    $$\left( { k }_{ 2 }=2{ k }_{ 1 } \right) $$
    $$\Rightarrow \dfrac { { \lambda  }_{ 2 } }{ { \lambda  }_{ 1 } } =\dfrac { 1 }{ \sqrt { 2 }  } $$
  • Question 5
    1 / -0
    After absorbing a slowly moving neutron of mass $${m}_{N}$$ (momentum $$\sim  0$$) a nucleus of mass $$M$$ breaks into two nuclei of masses $${m}_{1}$$ and $$5{ m }_{ 1 }\left( 6{ m }_{ 1 }=M+{ m }_{ N } \right) $$ respectively. If the de-Broglie wavelength of the nucleus with mass $${m}_{1}$$ is $$\lambda$$, the de-Broglie wavelength of the other nucleus will be:
    Solution
    Momentum should be conserved.
    As initial momentum was $$zero $$ so final should also be zero.

    so $$p_1 +p_2=0$$   or $$p_1=-p_2$$ i.e. $$both $$ have $$same $$ values..............(1)

     where $$p_1$$ is momentum of $$m_1$$ and $$p_2$$ is that of $$m_2$$
    The deBroglie wavelength is  given by $$\lambda=\dfrac{h}{p}$$ 
    As both mass have same $$momentum, $$ , $$p_1=-p_2$$
    so same values of $$wavelength.$$ So answer is $$\lambda$$
  • Question 6
    1 / -0
    Photon of frequency $$v$$ has a momentum associated with it. If $$c$$ is the velocity of light, the momentum is :
    Solution
    We know,
    $$P=\dfrac { h }{ \lambda  } $$ where $$\lambda =$$ wavelength
    $$P=\dfrac { hv }{ C } $$
    Thus, the momentum with $$C$$ being the velocity of light $$=\dfrac { hv }{ C } $$.
  • Question 7
    1 / -0
    The graph shown below depicts plot of photocurrent versus anode potential for a cathode with 4 eV work function. The energy of the incident photon is

    Solution

    It is given that

    Work function

    $$ \phi =4\,eV $$

    $$ V=2V $$

    From Einstein’s relation

    $$h\nu =\phi +{{E}_{k}}$$

    Where $$h\nu $$ is the energy of photons. And Ek is the kinetic energy

    $$ h\nu =(4+2)eV $$

    $$ h\nu =6\,eV $$

  • Question 8
    1 / -0
    Let $$p$$ and $$E$$ denote the linear momentum and the energy of a photon. For another photon of smaller wavelength (in same medium)
    Solution
    De-Broglie relation:
    $$p=\frac { h }{ \lambda  } $$
    and from Planks relation:
    $$E=\frac { hc }{ \lambda  } $$
    Therefore, as $$\lambda$$ increases, both p and E increase.
  • Question 9
    1 / -0
    A proton and electron are accelerated by same potential difference starting from the rest have de-Broglie wavelength $$\lambda_p$$ and $$\lambda_e$$.
    Solution
    Let $${ m }_{ e }$$ and $${ m }_{ p }$$ be the mass of electron and proton respectively. Let the applied potential different be $$V$$.
    Thus, the de-Broglie wavelength of the $${ e }^{ - }$$,
    $${ \lambda  }_{ e }=\dfrac { h }{ \sqrt { 2{ m }_{ e }eV }  } \quad \longrightarrow \left( 1 \right) $$
    and de - Broglie wavelength of proton
    $${ \lambda  }_{ p }=\dfrac { h }{ \sqrt { 2{ m }_{ p }eV }  } \quad \longrightarrow \left( 2 \right) $$
    Dividing,
    $$\dfrac { { \lambda  }_{ p } }{ { \lambda  }_{ e } } =\dfrac { \sqrt { { m }_{ e } }  }{ \sqrt { { m }_{ p } }  } $$
    $${ m }_{ e }<{ m }_{ p }$$
    $$\therefore$$   $$\dfrac { { \lambda  }_{ p } }{ { \lambda  }_{ e } } <1$$
    $$\Rightarrow { \lambda  }_{ p }{ \lambda  }_{ e }$$
  • Question 10
    1 / -0
    The energy of a photon is equal to the kinetic energy of a proton. The energy of the photon is E. Let $${ \lambda  }_{ 1 }$$ be de-Broglie wavelength of the proton and $${ \lambda  }_{ 2 }$$ be the wavelength of the photon.The ration $$\dfrac { { \lambda  }_{ 1 } }{ { \lambda  }_{ 2 } }$$ is proportional to:
    Solution
    $$\lambda =\dfrac { h }{ p } $$
    photon energy $$E=hv$$
    So, $${ \lambda  }_{ 1 }=\frac { h }{ p } =\frac { h }{ \sqrt { 2mE }  } \quad \longrightarrow \left( i \right) \quad \Rightarrow E=h{ v }_{ 2 }=\dfrac { { h }_{ c } }{ { \lambda  }_{ 2 } } $$
    $${ \lambda  }_{ 2 }=\dfrac { { h }_{ c } }{ E } \quad \longrightarrow \left( ii \right) $$  from eq $$(i)$$ & $$(ii)$$
    $$\dfrac { { \lambda  }_{ 1 } }{ { \lambda  }_{ 2 } } =\dfrac { h\sqrt { 2mE }  }{ \left( \dfrac { { h }_{ c } }{ E }  \right)  } \sim \dfrac { E }{ \sqrt { E }  } ={ E }^{ 1/2 }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now