Self Studies

Dual Nature of Radiation and Matter Test - 45

Result Self Studies

Dual Nature of Radiation and Matter Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The slope of graph drawn between stopping potential and frequency of incident light for a given surface will be:-
    Solution
    $$eV_{o}= h V [V_{o}= Stooping\ potential, V= frequency  ]$$
    $$\dfrac{V_{o}}{V}= \dfrac{h}{e} = $$ side

  • Question 2
    1 / -0
    de-Broglie wavelength associated with an electron revolving in the $$n^{th}$$ state of hydrogen atom is directly proportional to 
    Solution
    $$ V_n = 2.165 \times 10^6(\cfrac{z}{n})$$
    $$ V_n \propto \cfrac{1}{n}$$
    $$ mV_n \propto \cfrac{1}{n}$$
    $$\therefore  \lambda = \cfrac{h}{mV_n} \propto n$$
  • Question 3
    1 / -0
    The de-Brogile wavelength corresponding to the root mean square velocity of the hydrogen molecule at $$20^{o}C$$.
    Solution

    Given that,

    $$T=20+273=293\,K$$

    Molecular mass of $${{H}_{2}}=2\times 1.00794=2.01588\times 1.66\times {{10}^{-27}}\,kg$$

    We know that,

      $$ \dfrac{1}{2}mv_{rms}^{2}=\dfrac{3}{2}kT $$

     $$ {{v}_{rms}}=\sqrt{\dfrac{3kt}{m}} $$

    Now, the de Broglie wave length

      $$ \lambda =\dfrac{h}{m{{v}_{rms}}} $$

     $$ \lambda =\dfrac{h}{\sqrt{3mkT}} $$

     $$ \lambda =\dfrac{6.63\times {{10}^{-34}}}{\sqrt{3\times 2.01588\times 1.66\times {{10}^{-27}}\times 1.38\times {{10}^{-23}}\times 293}} $$

     $$ \lambda =\dfrac{6.63\times {{10}^{-34}}}{\sqrt{4059.20\times {{10}^{-50}}}} $$

     $$ \lambda =\dfrac{6.63\times {{10}^{-34}}}{63.712\times {{10}^{-25}}} $$

     $$ \lambda =0.104\times {{10}^{-9}} $$

     $$ \lambda =1.04\overset{\circ }{\mathop{A}}\, $$

    Hence, the de Broglie wave length is $$1.04\overset{\circ }{\mathop{A}}\,$$ 

  • Question 4
    1 / -0
    The equation $$E=pc$$ is valid
  • Question 5
    1 / -0
    Electron has energy of 100 eV what will be its wavelength 
    Solution
    Energy $$E=100ev=100\times 1.6 \times 10^{-19} Joule$$
    Wavelength, $$\lambda = \dfrac{h}{\sqrt[2]{2mE}}=\dfrac{6.62\times 10^{-34}Js}{\sqrt[2]{2\times 9.1\times 10^{-31} Kg \times 1.6\times 10^{-17}J}}=1.226\times 10^{-10} m=1.2Angstrom$$
    Option A is correct.
  • Question 6
    1 / -0
    Photoelectric there should wavelength of photo sensitive material is 3700 A, the work function in eV is $$(h=6.63 \times 10^{-34} Js)$$ :
    Solution

    $$\displaystyle {{hc} \over \alpha } = w$$ function-

    $$ = \displaystyle {{6.64 \times {{10}^{ - 34}} \times 3 \times {{10}^8}} \over {3700 \times {{10}^{ - 10}} \times 1.6 \times {{10}^{ - 19}}}}$$

    $$ = 3.36ev$$

  • Question 7
    1 / -0
    What is de-Broglie wavelength of electron having energy $$10\ keV$$?
    Solution

  • Question 8
    1 / -0
    Electrons used in an electron microscope are accelerated by a voltage of $$25$$ kV. If the voltage is increased to $$100$$ kV then the de-Broglie wavelength associated with the electrons would?
    Solution

    De Broglie wavelength in terms of accelerated potential difference is

    $$\lambda =\dfrac{12.27}{\sqrt{V}}$$

    Initial and final wavelength are $${{\lambda }_{1}}$$and $${{\lambda }_{2}}$$having potential as $${{V}_{1}}$$and $${{V}_{2}}$$

    $$ \dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\sqrt{\dfrac{{{V}_{2}}}{{{V}_{1}}}} $$

    $$ \dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\sqrt{\dfrac{100}{25}} $$

    $$ \dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\sqrt{2} $$

    $$ \dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=2 $$

    $$ {{\lambda }_{2}}=\dfrac{{{\lambda }_{1}}}{2} $$

    So, new wavelength is decrease by 2.

  • Question 9
    1 / -0
    The de Broglie wavelength $$\lambda $$ associated with a  proton increases by $$25\%$$. If its momentum is decreased by $$p_0$$. The initial  momentum was:
    Solution
    Initial wavelength =$$\lambda$$
    final =$$\lambda +\dfrac{\lambda}{4}=\dfrac{5 \lambda }{4}$$
    Initial momentum = $$\dfrac{h}{\lambda}$$
    final momentum = $$\dfrac{4\lambda}{5 \lambda}$$
    $$\Delta P=\dfrac{h}{5 \lambda}=P_0$$
    initial momentum =$$\dfrac{h}{\lambda}=5P_0$$
  • Question 10
    1 / -0
    The de-Broglie wavelength of an electron in the first Bohr orbit is
    Solution
    $$mvr_n=\dfrac{nh}{2\pi}$$

    $$\Rightarrow pr_n=\dfrac{nh}{2\pi}$$

    $$\Rightarrow \dfrac{h}{\lambda}\times r_n=\dfrac{nh}{2\pi}$$

    $$\Rightarrow \lambda =\dfrac{2\pi r_n}{n}$$, for first orbit $$n=1$$ so $$\lambda =2\pi r_1$$
    = circumference of first orbit 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now