Self Studies

Dual Nature of Radiation and Matter Test - 51

Result Self Studies

Dual Nature of Radiation and Matter Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A photoelectric cell is lightened by a light source, situated at a distance d from the cell. If distance becomes $$d/2$$ then number of electrons emitted per sec will be:- 
    Solution
    Intensity is directly proportional to number of photons $$incident$$ on the surface.
    $$Intensity \propto \dfrac{1}{distance^2}$$
    so on making distance $$1/2 $$ we will get intensity $$(\dfrac{1}{1/2})^2=4$$ $$times$$
    One photon contribute in one electrons so the number of electrons will also become $$4$$ times.
  • Question 2
    1 / -0
    In stopping potential ($$V$$) photo current ($$I$$) graph, if $${V}_{2}> {V}_{1}$$ then compare the wavelengths of incident radiations

    Solution

  • Question 3
    1 / -0
    The de-Broglie wavelength of a proton accelerated by $$400\ V$$ is
    Solution
    $$0.043\dot{A}$$

    formulae,

    $$qv=\dfrac{1}{2}mv^2$$

    $$\Rightarrow v=\sqrt{\dfrac{2qV}{m}}$$

    $$\Rightarrow v=\sqrt{\dfrac{2\times 1.6\times 10^{-19}\times 400}{1.67\times 10^{-27}}}=2.77\times 10^{5}m/s$$

    $$\lambda =\dfrac{h}{mv}$$

    $$=\dfrac{6.63 \times 10^{-34}}{(1.67\times 10^{-27})(2.77\times 10^{5})}$$

    $$\therefore \lambda =1.43\times 10^{-12}m$$

    $$\Rightarrow \lambda =0.0143\dot{A}$$

  • Question 4
    1 / -0
    Find the number of electrons emitted per second by a $$24 W$$ source of monochromatic light of wavelength $$6600 A$$ assuming $$3%$$ efficiency for photoelectric effect (take $$h = 6.6 \times 10_34 \, Js$$)
    Solution

  • Question 5
    1 / -0
    A proton and an electron are accelerated by same potential difference starting from rest have de- Brogile  wavelength $$\lambda _ { p }$$ and $$\lambda _ { e ^ { * } }$$ 
    Solution
    The wavelength of the photon is given as:
    $$\begin{array}{l} \lambda =\dfrac { h }{ P }  \\ =\dfrac { h }{ { \sqrt { 2mk }  } }  \\ \lambda \propto \dfrac { 1 }{ { \sqrt { m }  } }  \\ \therefore { \lambda _{ p } }<{ \lambda _{ e } } \\ Hence, \ option\, \, C\, \, is\, \, correct\, \, answer. \end{array}$$
  • Question 6
    1 / -0
    For $$\gamma$$ photon emission, Which is in correct ?
    Solution

  • Question 7
    1 / -0
    The phenomenon of photo emission depends on-
    Solution

  • Question 8
    1 / -0
    A particle $$A$$ of mass $$m$$ and initial velocity $$v$$ collides with a particle $$B$$ of mass $$\dfrac {m}{2}$$ which is at rest. The collision is held on, and elastic. The ratio of the de-Broglie wavelength $$\lambda_{A}$$ to $$\lambda_{B}$$ after the collision is
    Solution
    By conservation of linear momentum $$mV={ mV }_{ 1 }+\dfrac { m }{ 2 } { V }_{ 2 }$$
    $$2V=2{ V }_{ 1 }+{ V }_{ 2 }\quad \longrightarrow \left( 1 \right) $$              $${ \lambda  }_{ 1 }=\dfrac { h }{ { p }_{ 1 } } $$  ;    $${ \lambda  }_{ 2 }=\dfrac { h }{ { O }_{ 2 } } $$
    By law of collision
    $$e=\dfrac { { V }_{ 2 }-{ V }_{ 1 } }{ { U }_{ 1 }-{ U }_{ 2 } } $$                                   $$\dfrac { { \lambda  }_{ 1 } }{ { \lambda  }_{ 2 } } =\dfrac { 2 }{ 1 } $$
    $$u={ V }_{ 2 }-{ V }_{ 1 }\quad \longrightarrow \left( 2 \right) $$                   $$\boxed { { \lambda  }_{ 1 }:{ \lambda  }_{ 2 }=2:1 } $$
    equ $$(1)$$ and $$(2)$$
    $${ V }_{ 1 }=\dfrac { V }{ 3 } \quad ;\quad { V }_{ 2 }=\dfrac { 4V }{ 3 } $$
  • Question 9
    1 / -0
    A heavy nucleus at rest breaks into two fragments which fly off with velocities in the ratio $$8:1$$. the ratio of de-broglie wavelengths of fragments are 
    Solution
    Momentum conversation. Given,
    $${ m }_{ 1 }{ V }_{ 1 }={ m }_{ 2 }{ V }_{ 2 }$$
    $$\dfrac { { V }_{ 1 } }{ { V }_{ 2 } } =\dfrac { 8 }{ 1 } =\dfrac { { m }_{ 2 } }{ { m }_{ 1 } } $$
    So,  $$\dfrac { { m }_{ 1 } }{ { m }_{ 2 } } =\dfrac { 1 }{ 8 } $$
    but when particle break then density $$=$$ constant
    So, $$V\alpha m$$
    $$\dfrac { { V }_{ 1 } }{ { V }_{ 2 } } =\dfrac { { m }_{ 1 } }{ { m }_{ 2 } } $$
    $$\dfrac { { a }_{ 1 }^{ 3 } }{ { a }_{ 2 }^{ 3 } } =\dfrac { 1 }{ 8 } $$
    $$\dfrac { { a }_{ 1 } }{ { a }_{ 2 } } ={ \left( \dfrac { 1 }{ 8 }  \right)  }^{ 1/3 }\Rightarrow \boxed { \dfrac { { a }_{ 1 } }{ { a }_{ 2 } } =\dfrac { 1 }{ 2 }  } $$
    $$\Rightarrow { a }_{ 1 }:{ a }_{ 2 }=1:2$$
  • Question 10
    1 / -0
    Graph is plotted between maximum kinetic energy of electron with frequency of incident photon in Photo electric effect. The slope of curve will be :

    Solution
    From the $$E_k-V$$ graph, 
    The slope of the curve is Planck's constant.
    From the Einstein photoelectric equation,
    $$E_k=hV-\phi$$. . . . .(1)
    where, $$\phi=$$work function.
    $$V=$$ frequency
    From the equation (1)
    $$m=h$$   (equation of straight line, $$Y=mx+c$$)
    The slope of the curve is $$h$$.
    The correct option is C.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now