Self Studies

Dual Nature of Radiation and Matter Test - 55

Result Self Studies

Dual Nature of Radiation and Matter Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    When the electron in a H-atom jumps from 6th excited state to 2nd excited state, the maximum number of emission lines will be.
    Solution
    Number lines = $$\begin{array}{l} \dfrac { { n\left( { n-1 } \right)  } }{ 2 }  \\ \dfrac { { 7\left( { 7-1 } \right)  } }{ 2 } -\dfrac { { 3\left( { 3-1 } \right)  } }{ 2 } =21-3=18 \end{array}$$
  • Question 2
    1 / -0
    Wavelength associated with an electron having kinetic energy $$ 3 \times 10^{-25} J$$ is $$x \times 10^{-7} \ m $$. What is the value of $$x$$?
    Solution
    $$\begin{array}{l} \lambda =\dfrac { h }{ { \sqrt { 2m\, K.E. }  } } =x\times { 10^{ -7 } } \\ \Rightarrow x=\dfrac { { 6.63\times { { 10 }^{ -34 } }\times { { 10 }^{ 7 } } } }{ { \sqrt { 2\times 9\times { { 10 }^{ -31 } }\times 3\times { { 10 }^{ -25 } } }  } }  \\ =\dfrac { { 6.63\times { { 10 }^{ -27 } } } }{ { \sqrt { 54 } \times { { 10 }^{ -28 } } } }  \\ =9.02. \\ Ans.\, (A) \end{array}$$
  • Question 3
    1 / -0
    Two particle of mass m and 2m moving in opposite direction collide head on. They have same de-Broglie wavelength before collision after the collision.
  • Question 4
    1 / -0
    Wavelength of an electron having  energy 10 keV is ....................$${{\text{A}}^0}$$
    Solution

  • Question 5
    1 / -0
    Among the following for which one mathemetical expression $$\lambda =\dfrac { h }{ p } $$ stands
    Solution

  • Question 6
    1 / -0
    A free particle with initial kinetic energy E and de-broglie wavelength $$\lambda$$ enters a region in which it has potential energy U. What is the particle's new de-Broglie wavelength?
    Solution
    $$\begin{array}{l} The\, \, initial\, \, kinetic\, \, energy\, \, of\, \, free\, \, particle: \\ E=\frac { { { p^{ 2 } } } }{ { 2m } } \to =\sqrt { 2mE }  \\ De\, \, broglie\, \, wavelength: \\ \lambda =\frac { h }{ p } =\frac { h }{ { \sqrt { 2mE }  } }  \\ Energy\, \, of\, \, the\, \, particle\, \, when\, \, it\, \, enters\, \, the\, \, region: \\ { E_{ f } }=E-U \\ So,\, \, its\, \, wavelength\, \, becomes: \\ { \lambda _{ f } }=\frac { h }{ { \sqrt { 2m{ E_{ f } } }  } } =\frac { h }{ { \sqrt { 2m\left( { E-U } \right)  }  } }  \\ \lambda _{ f }^{ 2 }=\frac { { { h^{ 2 } } } }{ { 2mE } } \left( { \frac { E }{ { E-V } }  } \right) =\frac { { { h^{ 2 } } } }{ { 2mE } } \left( { \frac { 1 }{ { 1-U/E } }  } \right)  \\ { \lambda _{ f } }=\frac { h }{ { \sqrt { 2mE }  } } { \left( { \frac { 1 }{ { 1-U/E } }  } \right) ^{ 1/2 } }=\lambda { \left( { 1-U/E } \right) ^{ -1/2 } } \end{array}$$
    Hence,
    option $$(A)$$ is correct answer.
  • Question 7
    1 / -0
    Two particles of de-broglie wavelength $$\lambda_x$$ and $$\lambda_y$$ are moving in opposite directions. find dBroglie wavelength after perfectly inelastic collision:
    Solution
    $$\dfrac{h}{\lambda_x} - \dfrac{h}{\lambda_y} = \dfrac{h}{\lambda}$$

    $$\dfrac{1}{\lambda} = \dfrac{\lambda_y - \lambda_x}{\lambda_x  \lambda_y}$$

    $$\dfrac{\lambda_x \lambda_y}{\lambda_y - \lambda_x}$$ or $$\dfrac{\lambda_x \lambda_y}{\lambda_x - \lambda_y}$$
  • Question 8
    1 / -0
    A proton and an $$\alpha$$ particle are accelerated through the same potential difference V. The ratio of their de Broglie wavelengths is?
    Solution
    $$\lambda =\dfrac{h}{\sqrt{2mqV}}\Rightarrow \lambda \sqrt{mq}=com$$
    $$\Rightarrow \dfrac{\lambda_p}{\lambda_{\alpha}}=\sqrt{\dfrac{2\times 4}{1\times 1}}=2\sqrt{2}$$.
  • Question 9
    1 / -0
    A source of light has energy flux of 10 $$W/m^2$$. The light is falling perpendicularly to the surface of area 5 $$cm^2$$. If the surface completely absorbs the incident light then the force exerted on the surface is approximately
    Solution
    $$\begin{array}{l}F=\frac{I A}{c} \  \   \ \text { (if coupletely absorbs) } \\F=\frac{10 \mathrm{~W} /\mathrm{m}^2\times 5 \times 10^{-4} \mathrm{~m}^{2}}{3 \times 10^{8}}\end{array}$$

    $$\begin{aligned}F &=\frac{50}{3} \times 10^{-12}\mathrm{~N} \\F &=1.6 \times 10^{-11}\mathrm{~N} \\& \therefore \text { option } A\text { is correct }\end{aligned}$$
  • Question 10
    1 / -0
    The De-Broglie wave length of electron in second exited state of hydrogen atom is
    Solution
    $$\lambda = \sqrt {\dfrac {150}{1.5}} = 10\overset {\circ}{A}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now