Self Studies

Dual Nature of Radiation and Matter Test - 66

Result Self Studies

Dual Nature of Radiation and Matter Test - 66
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The figure shows graph between stopping potential (along $$y$$-axis) and incident frequency (along x-axis) for different target metal $$A, B, C$$ and $$D$$. Let $$\displaystyle \phi _{A},\phi _{B},\phi _{C}\: and\: \phi _{D} $$are the work function of different target metals $$A, B, C$$ and $$D$$ respectively Then the correct rank of work function of different target metals is

    Solution
    The Einstein's photoelectric equation in terms of stopping potential is $$eV_s=h\nu-\phi$$  
    or $$V_s=\dfrac{h\nu}{e}-\phi/e$$
    Thus, it will represent a straight line and intercept is $$\phi/e$$
    From the graph we can write, $$\phi_A/e>\phi_B/e>\phi_C/e>\phi_D/e$$
    or $$\phi_A>\phi_B>\phi_C>\phi_D$$
  • Question 2
    1 / -0
    The de-Broglie wavelength of an electron (mass $$1\times { 10 }^{ -30 }kg$$, charge$$=1.6\times { 10 }^{ -19 }\ C$$) with kinetic energy of $$200eV$$ is: (Planck's constant $$6.6\times { 10 }^{ -34 }J$$):
    Solution
    The de-Broglie wavelength $$\lambda =\cfrac { h }{ \sqrt { 2mk }  } $$
    Given $$h=6.6\times { 10 }^{ -34 }Js$$
    $$m=1\times { 10 }^{ -30 }kg$$
    $$K=200eV=200\times 1.6\times { 10 }^{ -19 }\quad J$$
    Substituting all these values
    $$\lambda =\cfrac { 6.6\times { 10 }^{ -34 } }{ \sqrt { 2\times 1\times { 10 }^{ -30 }\times 200\times 1.6\times { 10 }^{ -19 } }  } $$
    $$=0.825\times { 10 }^{ -10 }=8.25\times { 10 }^{ -11 }m$$
  • Question 3
    1 / -0
    An LED (Light Emitting Diode) is constructed from a p-n junction based on a certain $$Ga-As-P$$ semi-conducting material whose energy gap is $$1.9eV$$.What is the wavelength of the emitted light?
    Solution
    The wavelength of emitted light
    $$\lambda=\cfrac{hc}{{E}_{g}}$$
    Where $${E}_{g}=$$ energy gap of semiconductor
    $$=1.9eV$$
    $$=1.9\times 1.6\times {10}^{-19}V$$
    $$\lambda=\cfrac{6.6\times {10}^{-34}\times 3\times {10}^{8}}{1.9\times 1.6\times {10}^{-19}}m$$
    $$6.5\times {10}^{-7}m$$
    $$=650\times {10}^{-9}m$$
    $$=650nm$$
  • Question 4
    1 / -0
    The force on a hemisphere of radius $$1$$ cm if a parallel beam of monochromatic light of wavelength $$500$$ nm. falls on it with an intensity of $$0.5$$ W/cm$$^{2}$$, striking the curved surface in a direction which is perpendicular to the flat face of the hemisphere is:
    (Assume the collisions to be perfectly inelastic)
    Solution
    Momentum of each photon $$\Rightarrow p=\dfrac{h}{\lambda}=\dfrac{6.62\times10^{-34}}{500\times10^{-9}}=1.324\times10^{-27}kg.m/s$$

    Number of photons per sq. cm $$\Rightarrow n=\dfrac{0.5\lambda}{hc}=\dfrac{0.5}{3\times10^8}\times\dfrac{1}{1.324\times10^{-27}}=1.258\times10^{18}photons/cm^2$$ 

    As the beam is a parallel beam, photons strike on the circular area of the hemisphere $$\Rightarrow A=\pi r^2$$.

    Force $$=$$ Number $$\times$$ Momentum$$ \times$$ Area $$=1.258\times1.324\times3.14\times1^2\times10^{-9}N$$

    $$F=5.22\times10^{-9}N$$
  • Question 5
    1 / -0
    A photon of energy $$4\ eV$$ is incident on a metal surface whose work function is $$2\ eV$$. The minimum reverse potential to be applied for stopping the emission of electrons is :
    Solution
    When stopping potential is applied no electron will reach the cathode and the current will becomes zero.

  • Question 6
    1 / -0
    The de-Broglie wavelength of an electron moving with a velocity of $$1.5\times 10^8\ m/s$$ is equal to that of a photon. The ratio of kinetic energy of the electron to that of the photon $$(c=3\times 10^8\ m/s)$$:
    Solution
    Since the de-Broglie wavelength depends only on the momentum of particle, both electron and photon must have same momentum. Also, kinetic energy expression can be written as,

    $$K=\dfrac { 1 }{ 2 } m{ v }^{ 2 }=\dfrac { 1 }{ 2 } pv$$

    Hence,

    $$\dfrac { { E }_{ electron } }{ { E }_{ photon } } =\dfrac { { v }_{ electron } }{ { v }_{ photon } } =\dfrac { 1.5 \times { 10 }^{ 8 } }{ 3 \times { 10 }^{ 8 } } =\dfrac { 1 }{ 2 } $$
  • Question 7
    1 / -0
    The de-Broglie wavelength of an electron is the same as that of a $$50 keV$$ X-ray photon. The ratio of the energy of the photon to the kinetic energy of the electron is (the energy equivalent of electron mass is $$0.5 MeV$$):
    Solution
    Energy of X-ray photon            $$E_{photon}  = 50 keV  =  5\times 10^4 eV$$
    Energy equivalent of electron mass is $$0.5MeV$$   i.e    $$mc^2 = 0.5 MeV  =5 \times 10^5  eV$$                     ......(1)
    Wavelength of the photon         $$\lambda_{photon} = \dfrac{hc}{E}  = \dfrac{1242}{5 \times 10^4}$$   $$  nm  = 0.0248$$   $$  nm$$
    $$\therefore$$ de-Broglie wavelength of  the electron   $$\lambda = \lambda_{photon} = 0.0248$$   $$nm$$

    Kinetic energy of electron          $$E_{electron}  = \dfrac{h^2}{2m \times \lambda^2}  = \dfrac{h^2c^2}{2 (mc^2) \lambda^2}$$            $$(\because  E = \dfrac{p^2}{2m})$$

    Kinetic energy of electron          $$E_{electron}  = \dfrac{(1242)^2}{2 (5\times 10^5) \times (0.0248)^2}   $$  $$eV   = 2.51 \times 10^3  eV$$
    $$\therefore$$   $$\dfrac{E_{photon}}{E_{electron}}  = \dfrac{5 \times 10^4}{2.51 \times 10^3}  =20$$
  • Question 8
    1 / -0
    The ratio of the deBroglie wave length for the electron and proton moving with same velocity is:
    [$$m_p$$- mass of propton, $$m_e$$-mass of electron]
    Solution
    $$\dfrac{\lambda_e}{\lambda_p}=\dfrac{\dfrac{h}{m_eV}}{\dfrac{h}{m_pV}}$$

           $$=\dfrac{m_p}{m_e}$$

  • Question 9
    1 / -0
    The de-Broglie wavelength of a free electron with kinetic energy $$'E'$$ is $$\displaystyle \lambda $$. If the kinetic energy of the electron is doubled, the de-Broglie wavelength is:
    Solution
    Kinetic energy initially is given by: 
    $$E=\dfrac{1}{2}mv^2=\dfrac{p^2}{2m}$$
    $$\implies p=\sqrt {2m E}$$
    where 
    $$m:$$ Mass of the particle
    $$v:$$ Speed of the particle
    $$p:$$ Momentum of the particle

    De-broglie wavelength is given by,
    $$\lambda=\dfrac{h}{p}$$
    $$\therefore \lambda=\dfrac{h}{\sqrt{2mE}}$$

    Given $$E_2=2E_1$$
    $$\implies \lambda_2=\dfrac{\lambda_1} {\sqrt 2}$$
    Given $$\lambda_1=\lambda, \quad \therefore \lambda_2=\dfrac{\lambda}{\sqrt 2}$$
  • Question 10
    1 / -0
    What is the wavelength of light emitted when the electron in a hydrogen atom undergoes a transition from an energy level with $$n = 4$$ to an energy level with $$n = 2?$$
    Solution
    Here 486 nm = 4860 $$A^o$$ (Approx. 4852 $$A^o$$) 
    Option D.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now