Self Studies

Dual Nature of Radiation and Matter Test - 67

Result Self Studies

Dual Nature of Radiation and Matter Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the ratio of wavelength of a photon and that of an electron of mass, m of the same energy $$E$$?
    Solution
    Wavelength of the photon is related to its energy by:
    $$\lambda_p = \cfrac{hc}{E}$$

    For an electron its deborglie wavelength is given by:
    $$\lambda_e = \cfrac{h}{mv}$$
    Squaring,
    $$\lambda_e^2 = \cfrac{h^2}{m^2v^2}$$
          $$= \cfrac{1/2h^2}{Em}$$
    $$\lambda_e = \cfrac{h}{\sqrt{2Em}}$$

    $$\cfrac{\lambda_p}{\lambda_e} = c \sqrt{ \cfrac{2m}{E} }$$
  • Question 2
    1 / -0
    Calculate the momentum of particle whose de Broglie wavelength is $$2^oA$$.
    Solution
    De-broglie wavelength $$(\lambda) $$ = $$\frac{h}{mv} = \frac{h}{p} $$
                      Given , $$(\lambda) = 2 \times10^{-10} m$$
                            $$p=\frac{h}{\lambda }$$ where h $$=6.626$$ x $$10^{-34}$$ Js.  
                            $$p=\frac{6.626x10^{-34}}{2x10^{-10}}kgm/s$$
                              $$p=3.313x10^{-24}kgm/s$$
    Hence, the momentum of a particle whose de-broglie wavelength is $$3.313\times10^{-24}kgm/s$$
  • Question 3
    1 / -0
    An electron of mass 'm' has de-Broglie wavelength '$$\lambda$$' when accelerated through potential difference 'V'. When proton of mass 'M', is accelerated through potential difference $$9V$$, the de-Broglie wavelength associated with it will be : (Assume that wavelength is determined at low voltage)
    Solution
    De Broglie wavelength  $$\lambda = \dfrac{h}{\sqrt{2mK}}$$

    where $$K$$ is the kinetic energy.

    Kinetic energy $$K =eV$$

    We get  $$\lambda = \dfrac{h}{\sqrt{2meV}}$$

    $$\implies$$ $$\lambda \propto \dfrac{1}{\sqrt{mV}}$$         ........(1)

    Given :  $$V_1 = V$$   $$m_1 = m$$   $$m_2 = M$$   $$V_2 = 9V$$

    From equation (1), we get  $$\dfrac{\lambda_2}{\lambda_1} = \sqrt{\dfrac{m_1 V_1}{m_2V_2}}$$

    Or  $$\dfrac{\lambda_2}{\lambda} = \sqrt{\dfrac{m V}{M(9V)}}$$

    $$\implies$$ $$\lambda_2 =\dfrac{\lambda}{3} \sqrt{\dfrac{m }{M}}$$
  • Question 4
    1 / -0
    A proton when accelerated through a potential difference of $$V$$, has a de Broglie wavelength $$\lambda$$ associated with it. If an alpha particle is to have the same de Broglie wavelength $$\lambda$$, it must be accelerated through a potential difference of:
    Solution
    Since the kinetic energy will be equal to the work done on particle,

    $$K=qV$$

    Also, $$p=\sqrt { 2mK } $$

    Thus, $$\lambda =\dfrac { h }{ p } =\dfrac { h }{ \sqrt { 2mK }  } =\dfrac { h }{ \sqrt { 2mqV }  } $$

    For both to have same $$\lambda$$,

    $${ m }_{ p }{ q }_{ p }{ V }={ m }_{ a }{ q }_{ a }{ V }_{ a }$$

    $${ V }_{ a }=\dfrac { 1 }{ (4)(2) } V=\dfrac { V }{ 8 } $$

    Answer is option A.
  • Question 5
    1 / -0
    In hydrogen spectrum, the wavelength of the line is 656 nm, where as in the spectrum of a distant galaxy, the line wavelength is 706 nm. Estimated speed of galaxy with respect to the earth is :
    Solution
    $$ \dfrac { \triangle \lambda}{\lambda} = \pm \dfrac {v}{c} $$
    Here (-) sign to be used for appraoching (+) sign to be used for receding.
    $$ \dfrac { \triangle \lambda}{\lambda} = \dfrac {706-656}{656} = \pm = v/c $$
    $$  \dfrac {v}{c} = \dfrac {50}{656} $$
    $$ v = \dfrac {50}{656} \times c $$
    $$ v = \dfrac {50}{656} \times 3 \times 10^8 = 2 \times10^7 m/s $$
  • Question 6
    1 / -0
    An electronic transition from $$M$$ shell (n = 3) to $$K$$ shell (n =1) takes place in a hydrogenatom. Find the wavelength of radiation emited. ($$R =$$ 109, 677 $$cm^{-1}$$).
    Solution
    For a hydrogen atom,
                    $$\frac{1}{\lambda }=R\left [ \frac{1}{{n_{1}}^{2}}-\frac{1}{{n_{2}}^{2}} \right ]$$
    Given $$n_{1}=1$$ , $$n_{2}=3$$
                         $$\frac{1}{\lambda }=R\left [ 1-\frac{1}{9} \right ]$$
                           $$\frac{1}{\lambda }=\frac{1}{R}\left [ \frac{9}{8} \right ]$$
                                  $$=1.0257$$ x $$10^{-5}$$ cm
                                   $$=1025.7$$ x $$10^{-10}$$ m
                                         $$\approx$$  $$1026$$ $$\mathring { A } $$

  • Question 7
    1 / -0
    Figure represents a graph of kinetic energy of most energetic photoelectrons Km (in eV) and frequency $$\upsilon$$ for a metal used as cathode in photoelectric experiment. The threshold  frequency of light for the photoelectric emission from the metal is

    Solution
    From graph, $$\upsilon =  10^{15}\, Hz$$,
    $$k_{max} \, = \, 3 eV \, = \, 3 \, \times \, 1.6  \, \times \, 10^{-19} \, J$$
    According to Einsteins photoelectric equation
    $$k_{max} \, = \, h\upsilon \, - \, h\upsilon_{0}$$
    or  $$h\upsilon_{0} \, = \, h\upsilon \, - \, k_{max}$$
    or $$\upsilon_{0} \, = \, \upsilon \, - \dfrac{k_{max}}{h}$$ $$= \, 10^{15} \, - \, \dfrac{3 \, \times \, 1.6 \, \times \, 10^{-19}}{6.63 \, \times \, 10^{-34}}$$

    $$\upsilon_{0} = \, (10 \, - \, 7.3) \, \times \, 10^{14} \, = \, 2.7 \, \times \, 10^{14} \, Hz$$
  • Question 8
    1 / -0
    A particle A with a mass $$m_A$$ is moving with a velocity v and hits a particle B of mass $$m_B$$ at rest. If motion is one dimensional and take the collision is elastic, then the change in the de Broglie wavelength of the particle A is
    Solution
    According to law of conversation of momentum 
    $$m_Av \, + \, m_B \, \times \, 0 \, = \, m_Av_A \, + \, m_Bv_B$$
    or $$m_A(v - v_B) \, = \, m_Bv_B$$                   ....(i)
    According to law of conversation of klinetic energy 
    $$\dfrac{1}{2}m_Av^2 \, = \, \dfrac{1}{2}m_Av^2_A \, + \, \dfrac{1}{2}m_Bv^2_B$$

    or $$m_A(v^2 - V^2_A) = m_Bv^2_B$$

    or $$m_A (v - v_A)(v + v_A) \, = \, m_Bv^2_b$$        ...(ii)

    Dividing (ii) by (i), we get 
    $$v + v_A = v_B \, or \,  v = v_B - v_A$$        ...(iii) 

    Solving (i) and (iii), we get 
    $$v_A = \left ( \dfrac{m_A - m_B}{m_A + m_B}  \right )v \, $$    and     $$ \, v_B = \left ( \dfrac{2m_A}{m_A + m_B} \right )v$$

    $$\lambda_{initial} = \dfrac{h}{m_Av} $$        and    $$ \, \,  \lambda_{final} = \dfrac{h}{m_Av_A} = \dfrac{h(m_A + m_B)}{m_A(m_A - m_B)v}$$

    $$\therefore \Delta\lambda = \lambda_{final} - \lambda_{initial} = \dfrac{h}{m_Av}\left [ \dfrac{(m_A + m_B)}{(m_A - m_B)} -1\right ]$$
  • Question 9
    1 / -0
    Photons of wavelength $$\lambda$$ are incident on a metal. The most energetic electrons ejected from the metal are bent into a circular arc of radius R by a perpendicular magnetic field having a magnitude B. The work function of the metal is (where symbols have their usual meanings).
    Solution

  • Question 10
    1 / -0
    Photoelectron emission is observed for three different metals A, B and C. The kinetic energy of the fastest photoelectrons versus frequency 'V' is plouted for each metal . Which of the following graphs shows the phemomenon correctly.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now