Given that
$$n_2+n_1=4$$ .....(1) $$n_2^2-n^2_1=8$$ -----(2)
Here,
$$n_1$$ and $$n_2$$ are the energy levels of $$He^+$$ ion.
Solving equation (2), we have,
$$n_2^2 - n_1^2 = (n_2+n_1)(n_2-n_1)=8$$ -----(3)
Substituting (1) in equation (3), we have,
$$4\times(n_2-n_1) = 8$$
$$\Rightarrow (n_2-n_1) = \dfrac{8}{4}=2$$ ------- (4)
Solving equations (1) and (4), i.e.
$$n_2+n_1=4$$ .....(1)
$$n_2-n_1=2$$ .....(4)
We get,
$$n_1=1,n_2=3$$
Now, using Rydberg's wavelength equation, we have,
$$\dfrac{1}{\lambda}=R_HZ^2(\dfrac{1}{n_1^2}-\dfrac{1}{n_2^2})$$
where,
$$\lambda =$$ wavelength of the emitted photon
$$R_H =$$ Rydberg constant
$$Z =$$ atomic number of H or H-like ion and
$$n_1$$ & $$ n_2$$ are the energy levels of H or H-like ion
$$\Rightarrow \dfrac{1}{\lambda}=R_H \times 2^2\times (\dfrac{1}{1^2}-\dfrac{1}{3^2})$$
$$\Rightarrow \dfrac{1}{\lambda}=R_H \times 2^2\times (\dfrac{1}{1}-\dfrac{1}{9})$$
$$\Rightarrow \dfrac{1}{\lambda}=R_H \times 2^2\times (\dfrac{9-1}{9})$$
$$\Rightarrow \dfrac{1}{\lambda}=R_H\times 4\times \dfrac{8}{9} = \dfrac{32R_H}{9}$$
$$\Rightarrow \lambda=\dfrac{9}{32R_H}$$
$$\therefore$$ (C) option is correct.