Self Studies

Dual Nature of Radiation and Matter Test - 69

Result Self Studies

Dual Nature of Radiation and Matter Test - 69
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    After absorbing a slowly moving neutron of Mass $$m_N$$ (momentum $$\approx 0$$) a nucleus of mass M breaks into two nuclei of masses $$m_1$$ and $$5m_1$$ $$(6m_1=M+m_N)$$ respectively. If the de Broglie wavelength of he nucleus with mass $$m_1$$ is $$\lambda$$, the de Broglie wavelength of the nucleus will be.
    Solution
    Since initial momentum of the system is $$P_i=0$$

    Hence final momentum will also be $$P_f=0$$ from conservation of momentum

    Now, let momentum of two nuclei produced be $$P_1$$ and $$P_2$$.

    Then, both momentum will be opposite to each other and $$P_1=P_2$$ in magnitude

    Now, $$\lambda=\dfrac{h}{mv}=\dfrac{h}{p}$$

    Since,$$P_1=P-2\implies \lambda_1=\lambda_2=\lambda$$

    Answer-(C)
  • Question 2
    1 / -0
    For which of the following wave functions, does the heisenberg uncertainty relation read $$\Delta x\Delta {p_x} = h/2.$$
    Solution

  • Question 3
    1 / -0

    Particle having mass $$100 mg$$ is moving with a speed of $$200
    m/s$$. The associated wavelength of the particle is $$( h = 6.626 \times
    10^{-34} js)$$

    Solution

  • Question 4
    1 / -0
    Assume that a molecule is moving with the root mean square speed at temperature 300 K. The de Broglie wavelength of nitrogen molecule is (Atomic mass of nitrogen = 14.0076 u, h = $$6.63 \, \times \, 10^{-27} \, J \, s, \, k_B \, = \, 1.38 \, \times \, 10^{-23} J \, K^{-1}, \, 1 \, u \, = \, 1.66 \,. \times \, 10^{-27} \, kg)$$ 
    Solution
    Mean Kinetic energy if a molecule:
    $$ \dfrac{1}{2}\,  mv_{rms}^{2} \, = \, \dfrac{3}{2}k_{B}T$$

    Here, m = $$2 \times \, 14.0067 \, = \, 28.02 \, u$$
    As  $$\lambda \, = \, \dfrac{h}{mv_{rms}} \, = \dfrac{h}{\sqrt{3mk_{B}T}}$$

          $$= \, \dfrac{6.63 \, \times 10^{-34}}{\sqrt{3\times \left ( 28.02 \times 1.66 \times 10^{-27} \right )} \times 1.38 \times 10^{-23}\times 300}$$ 

         $$=  \, 2.75 \times 10 ^{-11}m $$ 
  • Question 5
    1 / -0
    If the momentum of an electron is changed by $$ \Delta p, $$ then the de-Brogile wavelength associated with it changes by $$0.05 \% $$ . The initial momentum of electron will be :
    Solution

    The initial momentum is given as,

    $$\dfrac{{d\lambda }}{\lambda } =  - \dfrac{{dP}}{{{P_i}}}$$

    $$\dfrac{{0.05}}{{100}} =  - \dfrac{{\Delta P}}{{{P_i}}}$$

    $$\dfrac{{0.05}}{{100}} =  - \dfrac{{\Delta P}}{{{P_i}}}$$

    $${P_i} =  - 2000\Delta P$$

    The initial momentum of electron is $$ - 2000\Delta P$$.

  • Question 6
    1 / -0
    A surface irradiated with light of wavelength 480 nm gives out electrons with maximum velocity v m/s, the cut off wavelength being 600 nm. The same surface would release electrons with maximum velocity 2v m/s if it is irradiated by light of wavelength.
    Solution

  • Question 7
    1 / -0
    A proton and an$$\alpha - particle$$ accelerated through same voltage.The ratio of their de-broglie wavelength will be :
    Solution
    $$\lambda _\alpha = \lambda_P$$
    $$\dfrac{h}{\sqrt{2m_\alpha  q_\alpha V}} = \dfrac{h}{\sqrt{2m_P q_P V}}$$

    and we know 
    $$m_\alpha = 4m_P$$
    $$2q_\alpha = q_P$$

    $$\dfrac{\lambda_P}{\lambda_a} = \dfrac{1}{2}$$

    Hence (A) option is correct
  • Question 8
    1 / -0
    An electron is moving with velocity $$6.6 \times 10^3 mls.$$ The DE-Imbroglio wavelength associated with electron is $$(mass of electron = 9 \times 10^{-31}kg,$$ Plank's Constant = $$6.62 \times 10^{-34} J-S)$$
    Solution
    de broglie wavelength, $$\lambda  =\dfrac{h}{P}$$

    $$\lambda = \dfrac{6.62 \times 10^{-34} }{g \times 10^{-31} \times 6.6 \times 10^3 m/s}$$

    $$\lambda = 1 \times 10^{-7} m $$

    Hence (C) option is correct
  • Question 9
    1 / -0
    The de-Broglie wavelength $$(\lambda_{B})$$ associated with the electron orbiting in the second excited state of hydrogen atom is related to that in the ground state $$(\lambda_{G})$$ by
    Solution

  • Question 10
    1 / -0
    The value of $$\left( { n }_{ 2 }+{ n }_{ 1 } \right) $$ and $$\left( { n }_{ 2 }^{ 2 }-{ n }_{ 1 }^{ 2 } \right) $$ for $${ He }^{ + }$$ ion in atomic spectrum are 4 and 8 respectively. The wavelength of emitted photon when electron jump from $${ n }_{ 2 }$$ to $${ n }_{ 1 }$$ is:
    Solution
    Given that
         $$n_2+n_1=4$$          .....(1)
         $$n_2^2-n^2_1=8$$        -----(2)
    Here, 
         $$n_1$$ and $$n_2$$ are the energy levels of $$He^+$$ ion.

    Solving equation (2), we have, 

         $$n_2^2 - n_1^2 = (n_2+n_1)(n_2-n_1)=8$$ -----(3)

    Substituting (1) in equation (3), we have, 

          $$4\times(n_2-n_1) = 8$$
          $$\Rightarrow (n_2-n_1) = \dfrac{8}{4}=2$$  ------- (4)

    Solving equations (1) and (4), i.e.
          $$n_2+n_1=4$$          .....(1)
          $$n_2-n_1=2$$          .....(4)

    We get,
          $$n_1=1,n_2=3$$

    Now, using Rydberg's wavelength equation, we have,

          $$\dfrac{1}{\lambda}=R_HZ^2(\dfrac{1}{n_1^2}-\dfrac{1}{n_2^2})$$

    where, 
          $$\lambda =$$ wavelength of the emitted photon
          $$R_H =$$ Rydberg constant
          $$Z =$$ atomic number of H or H-like ion and 
          $$n_1$$ & $$ n_2$$ are the energy levels of H or H-like ion

          $$\Rightarrow \dfrac{1}{\lambda}=R_H \times 2^2\times (\dfrac{1}{1^2}-\dfrac{1}{3^2})$$
          
          $$\Rightarrow \dfrac{1}{\lambda}=R_H \times 2^2\times (\dfrac{1}{1}-\dfrac{1}{9})$$
         
          $$\Rightarrow \dfrac{1}{\lambda}=R_H \times 2^2\times (\dfrac{9-1}{9})$$
     
          $$\Rightarrow \dfrac{1}{\lambda}=R_H\times 4\times \dfrac{8}{9} = \dfrac{32R_H}{9}$$
       
          $$\Rightarrow \lambda=\dfrac{9}{32R_H}$$

    $$\therefore$$ (C) option is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now