$$ \begin{array}{l} \text { we know that total energy } \\ \text { of an electron in } n^{\text {th }} \text { orbit } \\ \text { is }=-13.6 \frac{z^{2}}{n^{2}} ev \\ \text { Total Energy }=-13.6 \frac{z^{2}}{n^{2}} e v \end{array} $$
$$ \begin{array}{l} \text { Total Energy= Kinetic Energy+Potential energy } \\ \qquad \begin{array}{l}T \cdot E= K \cdot E +P \cdot E \end{array} \\ \text { & } K \cdot E = - \frac{P \cdot E}{2} \end{array} $$
$$ \begin{aligned} \therefore T \cdot E =\frac{-P \cdot E \cdot}{2}+P \cdot E \cdot \\ \frac{-13 \cdot 6 z^{2}}{n^{2}} e v &=\frac{P \cdot E}{2} \end{aligned} $$
$$ \begin{aligned} \therefore P \cdot E \cdot &=-\frac{2 \times 13 \cdot 6 \times z^{2}}{n^{2}} \\ &=-27 \cdot 2 \times \frac{z^{2}}{n^{2}} \end{aligned} $$
$$ \begin{aligned} \text { & } K \cdot E \cdot &=-\frac{P \cdot E}{2} \\ &=13 \cdot 6 \frac{z^{2}}{n^{2}} e v \\ & \text { for hydrogen's ground state } \\ z=1, & n=1 \end{aligned} $$
$$ \begin{aligned} P \cdot E =& \frac{-27 \cdot 2 \times (1)^{2}}{1} \\ =&-27. 2 e v \\ \& K.E= \frac{13.6 \times (1)^2}{1} = 13.6ev \\ \text { Hence, option } c \text { is correct. } \end{aligned} $$