Self Studies

Atoms Test - 54

Result Self Studies

Atoms Test - 54
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Dynamic mass of the photon in usual notations is given by -
    Solution
    $$\begin{array}{l}\text { From Einstien's theory of relativity, }\\\text { We can say that } \\\qquad E=m c^{2} \\\text { E is energy of ; } E=\dfrac{h c}{\lambda} \\\qquad \begin{array}{l}m=\dfrac{h}{c\lambda}\end{array}\end{array}$$
  • Question 2
    1 / -0
    Which of the following postulates of the Bohr model led to the quantization of energy of the hydrogen atom?
    Solution
    $$\begin{array}{l}\text { Quantization of of energy of the } \\\text { hydrogen atom is lead by } \\\text { angular momentum of the electron can } \\\text { only be an integral multiple of } \\h / 2 \pi.\end{array}$$
  • Question 3
    1 / -0
    a diatomic has a moment of inertia.By Bohr's quantization condition its rotational energy in the $$n^{th}$$ level ( n= 0 is not allowed ) is :
    Solution
    $$\begin{array}{l}\qquad V=R \omega \text { , } \omega \text { is Angular velocity. } \\\text { Moment of inertia, } I=m R^{2} \\\text { Bohr's Angular momentum, } \\\qquad \begin{array}{l}m V R=\frac{n h}{2\pi} \\m \omega R^{2}=\frac{n h}{2 \pi}\end{array}\end{array}$$


    $$\begin{array}{l}\qquad w=\frac{n h}{2 \pi m R^{2}} \\\text { Rotational energy } \\\qquad \begin{aligned}R \cdot E &=\frac{1}{2} I\omega^{2} \\&=\frac{1}{2} m R^{2} \times \frac{n^{2} h^{2}}{4\pi^{2}\left(m R^{2}\right)^{2}} \\R \cdot E&=n^{2}\left(\frac{n^{2}}{8 \pi^{2} m Q^{2}}\right) \\\therefore & R \cdot E=n^{2}\left(\frac{h^{2}}{8 \pi^{2} I}\right)\end{aligned}\end{array}$$
  • Question 4
    1 / -0
    The orbital angular moments of an electron is $$\sqrt 3 \cfrac h {\pi}$$.Which of the following may be the permissible value of angular momentum of this electron revolving in an unknown orbit.
    Solution
    $$\begin{array}{l}\text { Given: orbital angular momentum, }\\\qquad\begin{aligned}\sqrt{l(l+1)} \frac{h}{2 \pi}=\sqrt{3} \frac{h}{\pi} \\\frac{l(l+1)}{4} &=3 \\\ell (l+1) &=3(3+1) \\\therefore  &  l=3\end{aligned}\end{array}$$

    $$\begin{array}{l}\text { since, } l=3 \\\text { permissible values of } n \text { are } 4,5,6, \ldots . \\\text { Angular momentum can be }\frac{2 h}{\pi} \text { , } \frac{5 h}{2 \pi}, \frac{3 h}{\pi} \text { , } \ldots \\\therefore \quad \frac{2 h}{\pi}\end{array}$$
  • Question 5
    1 / -0
    In a hydrogen atom the force acting on the electron is proportional to :
    Solution
    A hydrogen atom the force acting on the election is proportional to $$r^2$$.
    Hence ,option $$C$$ is correct.
  • Question 6
    1 / -0
    $$2N$$ molecules of an ideal gas '$$X$$' each of mass '$$m$$' and $$4N$$ molecules of another ideal gas $$Y,$$ each of mass $$3m$$ are maintained at the same absolute temperature in the same vessel. The rms velocity are $$V1$$ and $$V2$$ respectively then (along x-coordinate axis)$$\dfrac{v_x}{v_y}$$
    Solution
    $$\begin{array}{l}\text { R.M.S velocity, Vrms } \alpha \sqrt{\frac{T}{m}} \\\qquad \begin{array}{l}T_{1}=T_{2} \\m_{1}=m \\m_{2}=3 m\end{array} \\\therefore \quad \frac{V_{1}}{V_{2}}=\sqrt{3} \\\text { Required ratio is } \sqrt{3}: 1\end{array}$$
  • Question 7
    1 / -0
    Alpha particles are projected towards fixed at a nucleus. Which of the paths shown in figure, is not possible

    Solution
    Trajectory 3 is not possible because alpha particle will repel alpha particle so trajectory 3 is showing attraction so it is not possible.
  • Question 8
    1 / -0
    An electron tube was sealed off during manufacture at a pressure of $$1.2 \times 10^{-7}$$ mm of mercury at $$27^oC$$. Its volume is $$100 cm^3$$. The number of molecules that remain in the tube is
    Solution
    $$P=nkT\\ n=\cfrac { P }{ kT } =\cfrac { hdg }{ kT } $$
    Number of molecules in the electron tube is$$=n\times V=\cfrac { hdgV }{ kT } $$
    $$\Longrightarrow n=\cfrac { hdg }{ kT } =\cfrac { 1.2\times { 10 }^{ -10 }\times 13600\times 9.8\times 100\times { 10 }^{ -6 } }{ 1.38\times { 10 }^{ -23 }\times 300 } =3.86\times { 10 }^{ 11 }$$
  • Question 9
    1 / -0
    Orbital acceleration of electron in first orbit of hydrogen atom is:
    Solution
    Orbital Angular momentum 
    $$mvr=\dfrac{nh}{2\pi }$$          n=1

    $$mvr=\dfrac{h}{2\pi }$$

    $$v=\dfrac{h}{2\pi mr}$$

    $$v^{2}=\left ( \dfrac{h}{2\pi mr} \right )^{2}$$

    $$a=\dfrac{V^{2}}{r}=\dfrac{h^{2}}{4\pi ^{2}m^{2}r^{3}}$$
  • Question 10
    1 / -0
    Equivalent electric current created by electron of a H-atom in its ground using Bohr's model is nearly
    Solution
    $$\begin{array}{l}\text { Let, radius of } 1^{\text {St }} \text { orbit Atom be "a_o" } \\\text { velocity of } e^{-} \text { in } 1^{\text {st }} \text { orbit is } v \\\text { Time period, }\left[T=\dfrac{2 \pi \cdot a_{0}}{v}]--(1)\right] \end{array}$$

    $$\begin{array}{l}\text { Electric current, } i=\dfrac{q}{T} \\\text { From } \\\qquad i=\dfrac{q v}{2 \pi a_{0}}\end{array}$$

    $$\begin{array}{l}\text { By keeping approximate experimental } \\\text { values in above expression, we get } \\\qquad i=4.489 \times 10^{-30} A\end{array}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now