Self Studies

Atoms Test - 70

Result Self Studies

Atoms Test - 70
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The radius of the smaller electron orbit in hydrogen-like ion is $$\dfrac{0.51\times 10^{-10}}{4}$$m, then it is?
    Solution
    For hydrogen like atom, the radius of nth orbit
    $$r^z_n=\displaystyle\frac{n^2}{Z}a_0$$
    Here, $$a_0=0.51\times 10^{-10}$$m
    $$\therefore r^z_n=\displaystyle\frac{0.51\times 10^{-10}}{4}$$m
    In the ground state, $$n=1$$
    $$\therefore \displaystyle\frac{0.51\times 10^{-10}}{4}=\frac{1^2}{z}\times 0.51\times 10^{-10}$$
    $$\therefore Z=4$$
    So, the atom is triply ionised beryllium$$(Be^{3+})$$.
  • Question 2
    1 / -0
    A single electron orbits around a stationary nucleus of charge $$+Ze$$, where $$Z$$ is a constant and $$e$$ is the magnitude of the electronic charge. It required $$47.2\ eV$$ to excite the electron from the second Bohr orbit to the third Bohr orbit.
    Find the energy required to excite the electron from the third to the fourth Bohr orbit.
    Solution
    $$ \begin{array}{l} \Delta E=13.6\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) z^{2} \\ \text { given } n_{1}=2, n_{2}=3 \\ 47 \cdot 2=13 \cdot 6 z^{2}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right) \\ z^{2}=25 \\ z=5 \end{array} $$
    $$ \begin{array}{l} \text { now, putting } n_{1}=3, n_{2}=4 \\ \Delta E=13.6 \times 2^{2} \times\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right) \mathrm{} \\ =13.6 \times 25 \times \frac{7}{16 \times 9} \\ =16.53 \mathrm{eV} \end{array} $$
    $$\text{Correct B}$$
  • Question 3
    1 / -0
    In an experiment on photoelectric effect photons of wavelength $$300\ nm$$ eject electrons from a metal of work function $$2.25\ eV$$. A photon of energy equal to that of the most energetic electron corresponds to the following transition in the hydrogen atom.
    Solution
    Given $$\phi =2.25eV\\ \lambda =300\times { 100 }^{ -3 }m$$
    Energy of the given photon,
    $$E=h\upsilon \\ =\frac { hc }{ \lambda  } =\frac { 663\times { 10 }^{ -34 }\times 3\times { 10 }^{ 8 } }{ 300\times { 10 }^{ -9 } } =6.63\times { 10 }^{ -19 }J=4.13eV$$
    Now, 
    $$E=\frac { hc }{ \lambda  } -\phi =4.137-2.25=1.88eV\rightarrow (1)$$
    So, 1.88eV energy is used to jump from one orbit to another orbit by electron.
    Therefore, energy of different orbital of hydrogen
    $$\Rightarrow n=1\qquad \qquad \qquad \quad 2\qquad \quad \quad 3\qquad \quad \quad 4\\ \quad \quad E=-13.6ev\qquad -3.4\qquad -1.51\quad \quad -0.85$$
    And from statement (1),
    $$1.18={ E }_{ i }-{ E }_{ f }\quad \\ $$
    {$${ E }_{ i }\& { E }_{ f }\quad $$ are energy of initial and final orbit}
    And also from the above table, we can observe that,
    $${ E }_{ i }-{ E }_{ f }=(-1.51)-(-3.4)=1.89eV\\ ={ { E }_{ 2 }-{ E }_{ 3 } }\quad \\ $$
    That the electron jumps from 3rd to 2nd orbit. Therefore, with one photon of 300nm wavelength hydrogen electron can jump from 3 to 2. 
  • Question 4
    1 / -0

    Directions For Questions

    The key feature of Bohr's theory of spectrum of hydrogen atom is the quantization of angular momentum when an electron is revolving around a proton. We will extend this to a general rotational motion to find quantized rotational energy of a diatomic molecule assuming it to be rigid. The rule to be applied is Bohr's quantization condition.

    ...view full instructions

    A diatomic molecules has moment of inertia $$I$$. By Bohr's quantization condition its rotational energy in the $$n^{th}$$ level $$(n = 0$$ is not allowed) is
    Solution

  • Question 5
    1 / -0
    A mixture of $$2$$ moles of helium gas (atomic mass $$=4$$ amu) and $$1$$ mole of argon gas (atomic mass $$=40$$ amu) is kept at $$300$$ K in a container. The ratio of the rms speeds $$\left(\dfrac{v_{rms}(helium)}{v_{rms}(argon)}\right)$$ is?
    Solution

    $$V_{rms}=\sqrt{\cfrac{3RT}{M}}$$

    $$V_{rms}$$ for helium $$=\sqrt{\cfrac{3RT}{4}}$$

    $$V_{rms}$$ for argon $$=\sqrt{\cfrac{3RT}{40}}$$

    $$\cfrac{V_{rms}(helium)}{V_{rms}(Argon)}=\sqrt{10}$$

    $$=3.16$$

  • Question 6
    1 / -0
    Which of the following statement is wrong?
  • Question 7
    1 / -0
    A single electron orbits around a stationary nucleus of charge $$+Ze$$, where $$Z$$ is a constant and $$e$$ is the magnitude of the electronic charge. It required $$47.2\ eV$$ to excite the electron from the second Bohr orbit to the third Bohr orbit. Find the radius of the first Bohr orbit.
    (The ionization energy of hydrogen atom $$13.6\ eV$$, Bohr radius $$= 5.3\times 10^{-11} m$$, speed of light $$= 3\times 10^{8} m/s$$, Planck's constant $$= 6.6\times 10^{-34} J-sec)$$.
    Solution

  • Question 8
    1 / -0
    In certain electronic transition from quantum level n to ground state in atomic hydrogen in one or more steps no line belonging to Brackett series is observed. The wave numbers which may be observed in Balmer series is then?
    Solution
    $$Given:$$ In certain electronic transition from quantum level n to ground state in atomic hydrogen in one or more steps no line belonging to Brackett series is observed.
    $$Solution:$$ 
    The $$n$$ should be equal to 4 ; otherwise if $$n>4$$,
    then Bracket series will also be noticed.
    Total no.of lines formed $$=\mathbf{n}(\mathbf{n}-1) / 2=4 \times 3 / 2=6$$
    No. of lines formed will be due to transition
    between these energy levels $$\mathbf{n}=4$$ to $$\mathbf{n}=\mathbf{3}$$
    $$\mathbf{n}=4 \operatorname{ton}=2$$
    $$\mathbf{n}=4$$ to $$\mathbf{n}=\mathbf{1}$$
    $$\mathbf{n}=3 \operatorname{ton}=2$$
    $$\mathbf{n}=3 \operatorname{ton}=1$$
    $$\mathbf{n}=2$$ to $$\mathbf{n}=1$$
    Balmer series line obtained when any electron comes to second orbit from outer orbit so
    out of these six lines, only two lines belongs to Balmer series.
    i.e., from $$n=4$$ to $$n=2$$ and
    $$\mathbf{n}=3$$ to $$\mathbf{n}=2$$
    For these lines wave number is,
    $$(\mathrm{i}) \overline{\mathbf{v}{1}}=\frac{\mathbf{1}}{\lambda}=\mathbf{R}{\mathbf{H}}\left[\frac{\mathbf{1}}{\mathbf{2}^{2}}-\frac{\mathbf{1}}{\mathbf{4}^{2}}\right]=\frac{\mathbf{1 2}}{\mathbf{6 4}} \mathbf{R}{\mathbf{H}}=\frac{\mathbf{3}}{\mathbf{1 6}} \mathbf{R}{\mathbf{H}}$$
    $$(\mathrm{ii}) \overline{\mathrm{v}{2}}=\frac{1}{\lambda} \mathbf{R}{\mathrm{H}}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=\frac{5}{36} \mathbf{R}_{\mathrm{H}}$$
    $$So,the$$ $$correct$$ $$option:C$$
  • Question 9
    1 / -0
    If velocity of $$\alpha  - $$particle is made $$1/3$$ times, then % variation in distance of closest approach will be: (with respect to initial)
    Solution
    The distance of closest approach of a particle is given by,
    $$r=\dfrac { 4KZ{ e }^{ 2 } }{ m{ v }^{ 2 } } $$
    Now, in second case, when $$v\rightarrow \dfrac { v }{ 3 } $$, distance of closed approach will be,
    $${ r }^{ ' }=\dfrac { 4kZ{ e }^{ 2 } }{ m{ \left( \dfrac { v }{ 3 }  \right)  }^{ 2 } } =\dfrac { 4kZ{ e }^{ 2 } }{ m{ { v } }^{ 2 } } =9r$$
    If r represents $$100$$%
    then $$9r=900$$%.
    Percentage variation$$=900-100=800$$%

  • Question 10
    1 / -0
    In the Bohr's model of hydrogen-like atom the force between the nucleus and the electron is modified as
    $$\quad F=\cfrac { { e }^{ 2 } }{ 4\pi { \varepsilon  }_{ 0 } } \left( \cfrac { 1 }{ { r }^{ 2 } } +\cfrac { \beta  }{ { r }^{ 3 } }  \right) $$, where $$\beta$$ is a constant. For this atom, the radius of the $$n$$th orbit in terms of the Bohr radius $$\left( { a }_{ 0 }=\cfrac { { \varepsilon  }_{ 0 }{ h }^{ 2 } }{ m\pi { e }^{ 2 } }  \right) $$ is:
    Solution
    $$\cfrac { { e }^{ 2 } }{ 4\pi { \varepsilon  }_{ 0 } } \left( \cfrac { 1 }{ { r }^{ 3 } } -\cfrac { \beta  }{ { r }^{ 3 } }  \right) $$
    $$\quad \therefore { v }^{ 2 }=\cfrac { { e }^{ 2 } }{ 4\pi { \varepsilon  }_{ 0 }mr } \left( \cfrac { 1 }{ { r }^{  } } +\cfrac { \beta  }{ { r }^{ 2 } }  \right) $$
    From Bohr's hypothesis $$\quad v=\cfrac { nh }{ 2\pi mr } \quad \therefore \cfrac { { n }^{ 2 }{ hn }^{ 2 } }{ 4{ \pi  }^{ 2 }{ m }^{ 2 }{ r }^{ 2 } } =\cfrac { { e }^{ 2 } }{ 4\pi { \varepsilon  }_{ 0 }mr } \left( \cfrac { 1 }{ { r }^{  } } +\cfrac { \beta  }{ { r }^{ 2 } }  \right) $$
    $$\therefore r+\beta ={ a }_{ 0 }{ n }^{ 2 }\quad $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now