$$Given:$$ In certain electronic transition from quantum level n to ground state in atomic hydrogen in one or more steps no line belonging to Brackett series is observed.
The $$n$$ should be equal to 4 ; otherwise if $$n>4$$,
then Bracket series will also be noticed.
Total no.of lines formed $$=\mathbf{n}(\mathbf{n}-1) / 2=4 \times 3 / 2=6$$
No. of lines formed will be due to transition
between these energy levels $$\mathbf{n}=4$$ to $$\mathbf{n}=\mathbf{3}$$
$$\mathbf{n}=4 \operatorname{ton}=2$$
$$\mathbf{n}=4$$ to $$\mathbf{n}=\mathbf{1}$$
$$\mathbf{n}=3 \operatorname{ton}=2$$
$$\mathbf{n}=3 \operatorname{ton}=1$$
$$\mathbf{n}=2$$ to $$\mathbf{n}=1$$
Balmer series line obtained when any electron comes to second orbit from outer orbit so
out of these six lines, only two lines belongs to Balmer series.
i.e., from $$n=4$$ to $$n=2$$ and
$$\mathbf{n}=3$$ to $$\mathbf{n}=2$$
For these lines wave number is,
$$(\mathrm{i}) \overline{\mathbf{v}{1}}=\frac{\mathbf{1}}{\lambda}=\mathbf{R}{\mathbf{H}}\left[\frac{\mathbf{1}}{\mathbf{2}^{2}}-\frac{\mathbf{1}}{\mathbf{4}^{2}}\right]=\frac{\mathbf{1 2}}{\mathbf{6 4}} \mathbf{R}{\mathbf{H}}=\frac{\mathbf{3}}{\mathbf{1 6}} \mathbf{R}{\mathbf{H}}$$
$$(\mathrm{ii}) \overline{\mathrm{v}{2}}=\frac{1}{\lambda} \mathbf{R}{\mathrm{H}}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=\frac{5}{36} \mathbf{R}_{\mathrm{H}}$$