Self Studies

Nuclei Test - 60

Result Self Studies

Nuclei Test - 60
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    During a $$\beta$$  positive decay experiment it is observed that kinetic energy of $$\beta$$  positive particle is 50% of Q value of the reaction, then select the correct alternative 
    Solution
    $$_{Z}X^{A}\rightarrow _{Z-1}Y^{A}+_{+1}e^{0}+v+Q$$
    Almost all energy came from Q value is distributed between $$_{+1}e^{0}$$ & $$v.$$
  • Question 2
    1 / -0
    When the number of nucleons in nuclei increase, the binding energy per nucleon
    Solution
    The binding energy per nucleon first increases up to iron-56, , then decreases gradually as shown in the figure.
    As Z increases the number of nucleons in nuclei increase. Hence the binding energy per nucleon first increases and then decreases with increase of mass number.

  • Question 3
    1 / -0
    A beam of $$16 MeV$$ deutrons from a cyclotron falls on a copper block. The beam is equivalent to a current of 15$$\mu A$$. At what rate do the deutrons strike the block?
    Solution
    Given: $$I = 15\mu A$$ $$=1.5\times 10^{-5}A$$  and  $$|e|=1.6\times 10^{-19}C$$ 

    Using, $$I = \dfrac{q}{t}$$ where $$q=n|e|$$
    $$\therefore$$ Rate of deutrons striking the block, $$\dfrac{dn}{dt} = \dfrac{I}{|e|}  =\dfrac{1.5\times 10^{-5}}{1.6\times 10^{-19}}  = 9.4\times 10^{13}$$ 
  • Question 4
    1 / -0
    In an $$\alpha-decay$$, the kinetic energy of $$\alpha-particle$$ is $$48\ MeV$$ and Q value of the reaction is $$50\ MeV$$. The mass number of the mother nucleus is: - (Assume that daughter nucleus is in ground state)
    Solution
    Let the reaction be:
    $$M_1 \rightarrow  \alpha + M_2 +Q$$

    By conservation of energy:
    $$Q = KE_1+KE_2$$
    $$KE_1 = 48\ MeV$$
    $$KE_2 = 50 -48 = 2\ MeV$$

    Now conservation of momentum:
    $$M_ {\alpha}V_{\alpha} = M_2V_2$$
    Squaring both the sides and dividing by $$2$$.
    Also, $$KE = \cfrac{1}{2}mv^2 = mp/2$$
    $$m_{\alpha} =4$$

    Substituting:
    $$ 4 \times 48 =  M_2 \times 2$$
    $$M_2 = 96$$

    Now by conservation of mass:
    $$M_1 = M_{\alpha} + M_2$$
    $$M_1 =100$$
  • Question 5
    1 / -0
    The binding energy of an electron in the ground state of $$He\ $$atom is $$E_0=24.6 eV.$$ The  energy required to remove both the electrons from the atom is 
    Solution
    Given, Energy required to remove electron in ground state from a neutral atom is $$24.6eV$$, which makes it $${He}^{+}$$ hydrogen like atom.
    Energy required to remove electron from singly ionized helium is $$13.6\times{2}^{4}$$.
    Therefore, Energy required to remove both the electrons is $$24.6+ 54.4= 79.0eV$$
  • Question 6
    1 / -0
    Find the binding energy of valence electron in the ground state of a $$Li$$ atom if the wavelength of the sharp series is known to be $$\lambda_{1}$$ $$= 813 nm$$ and the short wave cutoff wavelength $$\lambda_{2}$$, $$= 350 nm$$
    Solution
    For the first line of sharp series $$(3s\rightarrow 2p)$$ in a $$Li$$ atom
    $$\displaystyle \frac{hc}{\lambda}=\frac{hR}{(3+\alpha _0)^2} + \frac{hR}{(2+\alpha_1)^2} $$    ...........(1)

    For the short wave cut off wavelength of the same series 
    $$\displaystyle  \frac{hc}{\lambda_{2}}= \frac{hR}{(2+\alpha_1)^2} $$ ...............(2)

    Subtracting (1) from (2), we get: 
    $$(3+\alpha _0)^2$$$$=\displaystyle  \frac{hR\lambda_{1}\lambda_{2}}{hc(\lambda_{1}-\lambda_{2})}=\frac{R\lambda_{1}\lambda_{2}}{2\pi c(\lambda_{1}-\lambda_{2})}$$ 
     
    $$\displaystyle  3+\alpha _{0}=\sqrt\frac{R\lambda _{1}\lambda _{2}}{2\pi c(\lambda _{1}-\lambda _{2})}$$

    In the ground state BE of electrons is: 
    $$=\displaystyle  \dfrac{hR}{(2+\alpha _{0})^{2}}$$
    $$\displaystyle =\dfrac{hR}{\left (\sqrt{\dfrac{R\lambda_{1}\lambda_{2}}{2\pi c(\lambda_{1}-\lambda_{2})}-1} \right )^{2}}=5.32 eV$$
  • Question 7
    1 / -0
    The above is a plot of binding energy per nucleon $$E_{b},$$ against the nuclear mass M; A, B,C, D, E, correspond to different nuclei. Consider four reactions :
    (i) $$A+B\rightarrow C+\varepsilon $$
    (ii) $$C\rightarrow A+B+\varepsilon $$
    (iii) $$D+E\rightarrow F+\varepsilon $$
    (iv) $$F\rightarrow D+E+\varepsilon ,$$
    where $$\varepsilon$$  is the energy released. In which reactions $$\varepsilon $$ positive?

    Solution

    Lighter nuclei $$A$$ and $$B$$ can fuse to form a heavier nucleus C. In these fusion reactions, there is a mass defect giving rise to a release in energy. On the other hand, a heavy nucleus $$F$$ can be split into two nuclei $$D$$ and $$E$$ of moderate masses. In this fission reaction also, there is a mass defect which appears in the form of release of energy. Thus energy is released in the processes $$(i)$$ and $$(iv)$$.

  • Question 8
    1 / -0
    Masses of two isobars $$_{29}^{64}\textrm{Cu}$$ and $$_{30}^{64}\textrm{Zn}$$ are $$63.9298 amu$$ and $$63.9292 amu$$ respectively. It can be concluded from these data that 
    Solution
    Since mass of the isobar has decreased, an electron has been ejected.
    Thus $$^{64}_{29}Cu$$ decays to $$^{64}_{30}Zn$$ through the $$\beta - $$ decay as-
    $$^{64}_{29}Cu\rightarrow^{64}_{30}Zn+^{0}_{-1}e$$
  • Question 9
    1 / -0
    Statement 1: Binding energy of $$_8O^{15}$$ is less than $$_7N^{14}$$
    Statement 2 : Nuclear force is independent of the charge on the nucleons. For isobars, the difference in binding energies is mainly due to the difference in proton-proton coulombic repulsion
    Solution
    Both nucleus have equal neutron number so they are isobars. The nuclear force is independent of charge. So the binding energy difference will come only the proton-proton coulomb repulsion.
  • Question 10
    1 / -0
    The following deuterium reactions and corresponding reaction energies are found to occur
    $$^{14}N(d, p)^{15}N, Q=8.53 MeV$$
    $$^{15}N(d, \alpha)^{13}C, Q=7.58 MeV$$
    $$^{13}C(d, \alpha)^{11}B, Q=5.16 MeV$$
    The rotation $$^{14}N(d, p)^{15}N$$ represents the reaction $$^{14}N+d\rightarrow ^{15}N+p$$
    $$_2^4He=4.0026 amu, _1^2He=2.014 amu, _1^1H=1.0078 amu, n=1.0087 amu (1 amu=931 MeV)$$
    The Q values of the reaction $$^{11}B(\alpha, n)^{14}N$$ is
    Solution
    The following reactions are as follows-
    $$^{14}N  (d,p)^{15}N  :                ^{14}N  +  d  \rightarrow  ^{15} N  +  p                                                           Q_1 =  8.53    MeV$$               ..............(i)
    $$^{15}N  (d,\alpha)^{13}C  :                ^{15}N  +  d  \rightarrow  ^{13} C  +  \alpha                                                           Q_2 =  7.58    MeV$$              ..............(ii)
    $$^{13}C  (d,\alpha)^{11}B  :                ^{13}C  +  d  \rightarrow  ^{11} B  +  \alpha                                                           Q_2 =  5.16    MeV$$               ...........(iii)
    Adding  (i), (ii) $ (iii),       $$\implies$$ $$         ^{14}N  + 3 d  \rightarrow  ^{11} B  +  2\alpha +p       $$                            ...........(a) 
    $$Q$$ value for this reaction             $$Q_a  =  Q_1 + Q_2 + Q_3  = 21.27     MeV$$
    Now  for reaction,          $$3d   \rightarrow  p+   \alpha +   n$$           ...........(b)
                  $$\therefore           Q_b   =  [3\times 2.014 - 1.0078 + 4.0026 - 1.0087]  \times 931       MeV    =  21.32      MeV$$
    Now  $$(b) - (a)       \implies $$ $$         ^{11}B  + \alpha  \rightarrow  ^{14} N  +  n       $$             
                $$\therefore$$  Q value for this reaction,     $$Q  =  Q_b-Q_a  =  21.32 - 21.27     =  0.05    MeV$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now