Given:
\(R =\) radius of the sphere
\(E _{1}= E\)
\(q _{1}= Q\)
\(q _{2}=2\)
\(q _{1}=2 Q\)
\(r _{1}= r\)
\(r _{2}=2 r\)
Since, \(r>R\)
So the point is present outside the sphere.
We know that the electric field intensity at a point outside the metallic sphere is given as,
\(E=\frac{k q}{r^{2}} \quad \ldots\)(1)
Where, \(E=\) electric field intensity, \(k =9 \times 10^{9} N - m ^{2} / C ^{2}, q =\) charge on the sphere, and \(r =\) distance of the point from the center of the sphere
When, \(q _{1}= Q\) and \(r _{1}= r\)
\(E_{1}=\frac{k q_{1}}{r_{1}^{2}}\)
\(\Rightarrow E_{1}=\frac{k Q}{r^{2}}\quad \ldots\)(2)
When, \(q _{2}=2 Q\) and \(r _{2}=2 r\)
\(E_{2}=\frac{k q_{2}}{r_{2}^{2}}\)
\(\Rightarrow E_{2}=\frac{2 \times k Q}{(2 r)^{2}}\)
\(\Rightarrow E_{2}=\frac{k Q}{2 r^{2}}\quad \ldots\)(3)
By equation (2) and equation (3),
\(E_{2}=\frac{E_{1}}{2}\)
Since \(E_{1}=E\)
\(E_{2}=\frac{E}{2}\)
Hence, the correct option is (D).