Self Studies

Current Electricity Test - 38

Result Self Studies

Current Electricity Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A metallic conductor at 10$$^o$$C connected in the left gap of Meter Bridge gives balancing length 40 cm. When the conductor is at 60$$^o$$C, the balance point shifts by 5 cm. The temperature coefficient of resistance of the material of the wire
    Solution
    $$ R_{1} - Initial \ R  (10^{0} C)$$

    $$ R_{2}  - Final \ R  (20^{0} C)$$

    $$ \dfrac{R_{1}}{Q} = \dfrac{40}{60} = \dfrac{2}{3}$$

    $$ \dfrac{R_{2}}{Q} = \dfrac{45}{55}$$

    $$ \dfrac{R_{1}}{R_{2}} = \dfrac{2 \times 11}{3 \times 9}$$

    $$ \dfrac{R_{1}}{R_{2}} = \dfrac{22}{27}$$

    $$ \dfrac{1}{1+ \alpha \Delta T} = \dfrac{22}{27}  \Rightarrow  \dfrac{22}{27} = 1+ \alpha \Delta T$$

    $$ \Rightarrow  \dfrac{5}{22 \times 50} = \alpha  \Rightarrow  \alpha = \dfrac{1}{220}$$
  • Question 2
    1 / -0
    A cell of emf e$$_{1}$$ in the secondary circuit gives null deflection for 1.5m length of potentiometer of wire length 10m. If another cell of emf e$$_{2}$$ is connected in series with e$$_{1}$$then null deflection was obtained for 2.5 m length. Then e$$_{1}$$: e$$_{2}$$ is: 
    Solution
    Formula $$\dfrac { e_{ 1 } }{ e_{ 2 } } =\dfrac { l_{ 1 } }{ l_{ 2 } } $$

    $$\Rightarrow \dfrac { e_{ 1 } }{ e_{ 1 }+e_{ 2 } } =\dfrac { 1.5 }{ 2.5 }$$ ( here $$e_{ 2 }=e_{ 1 }+e_{ 2 }$$ )

    $$\dfrac { e_{ 1 } }{ e_{ 1 }+e_{ 2 } } =\dfrac{3}{5}$$

    $$5e_{ 1 }=3e_{ 1 }+3e_{ 2 }$$

    $$\Rightarrow 2e_{ 1 }=3e_{ 2 }$$

    $$\Rightarrow \dfrac { e_{ 1 } }{ e_{ 2 } } =\dfrac{3}{2}$$
  • Question 3
    1 / -0
    The resultant resistance of two resistors when connected in series is 48 ohm. The ratio of their resistances is 3 : 1. The value of each resistance is
    Solution
    $$ R_{1} + R_{2} = 48  $$ ohm

    $$ \frac{R_{1}}{R_{2}} = \frac{3}{1}$$

    $$ \Rightarrow  R_{1} = 3 R_{2}$$

    $$ \Rightarrow 4R_{2} = 48  \Rightarrow  R_{2} = 12 $$ ohm

    $$ R_{1} = 36 $$ ohm

  • Question 4
    1 / -0
    If the electric current in a lamp decreases by $$5\ \%$$, then the power output decreases by:
    Solution

    Hint: Power consumed by resistor is $$P = {i^2}R$$ ,where $$i$$ is the current flowing through the resistor and $$R$$ is the total resistance.

    Correct option: B

    Explanation for correct answer:

    Step 1: Find the decrease in power of the lamp.

    As, power of the lamp, $$P = {i^2}R$$

    $$ \Rightarrow \dfrac{{dP}}{P} = 2\dfrac{{di}}{i}$$

    $$ \Rightarrow \dfrac{{dP}}{P} = 2 \times 5\% $$

    $$ \Rightarrow \dfrac{{\vartriangle P}}{P} = 10\% $$

    So, the decrease in the power of the lamp is $$10\% $$ .

  • Question 5
    1 / -0
    A series battery of six lead accumulators, each of emf 2.0V and internal resistance 0.50$$\Omega $$ is charged by a 100 V dc supply. The series resistance should be used in the charging circuit in order to limit the current to 8.0A is
    Solution
    $$ \Rightarrow  (100-12) = I[3+R]$$

    $$ \dfrac{88}{3+R} = 8 $$

    $$ \Rightarrow  R = 8\Omega$$
  • Question 6
    1 / -0
    If in a Wheatstone bridge the battery and Galvanometer are interchanged, the condition for balance
    Solution
    Case 1

    $$ \dfrac{R_{1}}{R_{2}} = \dfrac{R_{3}}{R_{4}}$$

    Case 3
    Simplified

    $$ \dfrac{R_{1}}{R_{3}} = \dfrac{R_{2}}{R_{4}}$$

    $$ \dfrac{R_{1}}{R_{2}} = \dfrac{R_{3}}{R_{4}}$$

    Condition hasn't changed.
  • Question 7
    1 / -0
    Two equal resistances are connected in the gaps of a meter bridge. If the resistance in the left gap is increased by $$10\%$$, the balancing point shift :

    Solution

    Hint: In a meter bridge, $$\dfrac{{{R_{left}}}}{{{R_{right}}}} = \dfrac{l}{{100 - l}}$$ , where $${R_{left}}$$ and $${R_{right}}$$ are the resistances on the left and the right gap of the meter bridge respectively and $$l$$ is the balancing length.

    Correct option: D

    Explanation for correct answer:

    Step 1: Find the shift in balancing point.

    • Initially, $$\dfrac{R}{R} = \dfrac{l}{{100 - l}}$$

                 $$ \Rightarrow l = 50cm$$

    •  After the increase of resistance in left gap by $$10\% $$,

    $$\dfrac{{1.1R}}{R} = \dfrac{l}{{100 - l}}$$

    $$ \Rightarrow l = 52.38cm$$

    • The shift in balancing point, $$\dfrac{{\Delta l}}{l} \times 100 = \dfrac{{2.38}}{{50}} \times 100 =4.76\approx 4.8\% $$

    So, the shift in the balancing point is $$4.8\% $$ .

  • Question 8
    1 / -0
    In a potentiometer experiment, the balancing length of potentiometer of a cell of e.m.f 1.5V in the secondary is 440 cm. A resistance  5$$\Omega $$ is connected between the terminals of cell, the balancing length is 400 cm.Then
    a) internal resistance of the cell is 0.5$$\Omega $$
    b) terminal voltage of the cell is 15/11V
    c) Potential gradient of the potentiometer wire is $$\frac{1.5}{440}V/cm$$
    d) potential difference across the potoentiometer wire of length 10m is nearly 3.4V

    Solution
    $$ r= R(\dfrac{l_{1}}{l_{2}} - 1)$$
    $$  = 5(\dfrac{440}{400} -1) = 0.5\Omega$$

    $$ \Rightarrow  1.5 = I(5.5)$$
    $$ I = \dfrac{1.5}{5.5}$$

    $$ \Rightarrow  Terminal   Voltage = E-IR$$
                                                      $$ = 1.5-\dfrac{1.5}{5.5} \times 0.5$$
                                                     $$ = 1.5(\dfrac{5.5-0.5}{5.5}) = \dfrac{15}{11} V$$

    P.G $$ = \dfrac{emf  balanced}{length  required}$$
             $$ = \dfrac{1.5}{440} \dfrac{V}{cm}$$

    $$ \Rightarrow  \dfrac{\Delta V}{l} = \dfrac{1.5}{440}$$ 

    $$ \Delta V = \dfrac{1.5}{440} \times 1000$$

                  $$ = 3.4V$$
    $$ \therefore  a,b,c,d $$
                    are true

  • Question 9
    1 / -0

    The V - I graph for a conductor at temperature T$$_{1}$$ and T$$_{2}$$ are shown in fig. 

    (T$$_{2}$$ - T$$_{1}$$) is proportional to

    Solution
    We know that for conductors
    $$resistance \propto temperature$$
    i.e $$R_{1} \propto T_{1} \Rightarrow \tan\theta \propto T_{1} \Rightarrow \tan\theta = k T_{1}$$ 
    and $$R_{2} \propto T_{2} \Rightarrow \tan(90^{\circ} -\theta) \propto T_{2} \Rightarrow \cot\theta = k T_{2}$$
    where k is constant
    $$k(T_{2} - T_{1}) = (\cot\theta - \tan\theta)$$

    $$k(T_{2} - T_{1}) = (\dfrac{\cos\theta}{\sin\theta} - \dfrac{\sin\theta}{\cos\theta})$$

    $$k(T_{2} - T_{1}) = (\dfrac{\cos^{2}\theta - \sin^{2}\theta}{\sin\theta\cos\theta})$$

    $$k(T_{2} - T_{1}) = \dfrac{\cos2\theta}{\sin\theta\cos\theta}$$

    $$k(T_{2} - T_{1}) = 2\cot2\theta$$

    $$\Rightarrow T_{2} - T_{1} \propto \cot2\theta$$
  • Question 10
    1 / -0
    The temperature coefficient resistivity of a material is $$0.0004/K$$. When the temperature of the material is increased by $$50^{o}C$$, its resistivity increases by $$2\times 10^{-8}\ ohm-meter$$.The initial resistivity of the material of the resistance
    Solution
    $$(\rho-\rho_{0}) = \rho_{0} \propto \Delta T$$   (using standard result)

    $$ \Rightarrow  2 \times10^{-8} = \rho_{0} \times4 \times 10^{-4} \times50$$
    $$\Rightarrow 2\times 10^{-8} = \rho_{0}\times2 \times 10^{-2}$$

    $$\Rightarrow \rho_{0} = 100\times10^{-8}  ohm-meter$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now