Self Studies
Selfstudy
Selfstudy

Current Electricity Test - 68

Result Self Studies

Current Electricity Test - 68
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the network atom in figure, the equivalent resistance between the  point A and B is :-

    Solution
    Between points A and B , $$R_3$$  is parallel to $$R_4$$  and $$ R_5$$ whereas $$R_4$$ and $$R_5$$ are in series.

    We know that equivalent resistance in series is given as,
    $$R_{eq}=R_1+R_2$$

    Equivalent resistance in parallel is given as,
    $$\dfrac{1}{R_{eq}} = \dfrac{1}{R_1}+\dfrac{1}{R_2}$$

    Since $$R_4$$ and $$R_5$$ are in series, $$R_{45} = 2+4 = 6 \ \Omega$$

    Since, $$R_{45}$$ and $$R_3$$ are in parallel,
    $$\dfrac{1}{R_{eq}}=\dfrac{1}{3}+\dfrac{1}{6}=\dfrac{2+1}{6}=\dfrac{3}{6}$$

    $$R_{eq}=2 \ \Omega $$

  • Question 2
    1 / -0
    If two resistances $${R_1} = \left( {10.0 \pm 0.1} \right)\Omega \;and\;{R_2} = \left( {20.0 \pm 0.1} \right)\Omega \;are\;connected$$ in series, then the maximum percentage error in its equivalent resistance will be
    Solution
    Given,
    $$R_1=(10\pm0.1)\Omega$$
    $$R_2=(20\pm0.1)\Omega$$
    In series combination,
    $$R_{eq}=R_1+R_2$$
    $$R_{eq}=(10\pm0.1)+(20\pm0.1)=10+20+(\pm0.1)+(0.1)$$
    $$R_{eq}=(30\pm0.2)\Omega$$
    The maximum percentage error
    $$\dfrac{0.2}{30}\times 100=\dfrac{2}{3}$$%
    The correct option is B.
  • Question 3
    1 / -0
    If the emf of the battery in primary circuit of a potetimeter is doubled the value of potential gradient will:-
    Solution
    $$\begin{array}{l} P.G=\left( { \frac { E }{ { R+{ R_{ w } } } }  } \right) \frac { { { R_{ w } } } }{ { { l_{ w } } } }  \\ Then, \\ If\, E\, is\, double\, then\, potential\, gradient\, is\, also\, double. \\ Hence,\, option\, \, C\, is\, the\, correct\, answer. \end{array}$$
  • Question 4
    1 / -0
    Find the value of I ?

    Solution
    $$\begin{array}{l} { i_{ 1 } }+{ i_{ 2 } }+I=0 \\ \Rightarrow \dfrac { { 10-2 } }{ 5 } +\dfrac { { 5-2 } }{ 6 } +I=0 \\ \Rightarrow \dfrac { 8 }{ 5 } +\dfrac { 3 }{ 6 } +I=0 \\ \therefore I=-2.1A \end{array}$$
    $$\therefore$$ Option $$B$$ is correct.

  • Question 5
    1 / -0
    When resistor are connected in series what remains same.?
    Solution
    From the figure we can see
    $${ V }_{ 1 }=I{ R }_{ 1 }$$
    $${ V }_{ 2 }=I{ R }_{ 2 }$$
    $${ V }_{ 3 }=I{ R }_{ 3 }$$
    Hence, current is constant when resistor are connected in series.

  • Question 6
    1 / -0
    A long straight wire of radius a carries a steady current $$I.$$ The current is uniformly distributed over its cross-section. The ratio o the magnetic fields $$B$$ and $$B',$$ at radial distances $$\dfrac{a}{2}$$ and $$2a$$ respectively, from the axis of the wire is 
    Solution
    Consider two amperian loops of radius $$a/2$$ and $$2a$$ as shown in the diagram$$.$$
    Applying ampere's circuital law for these loops$$,$$ we get
    $$\oint {B.dL = } {\mu _0}{I_{enclosed}}$$
    For the smaller loop$$,$$
    $$ \Rightarrow B \times 2\pi \dfrac{a}{2} = {\mu _0} \times \dfrac{1}{{\pi {a^2}}} \times {\left( {\dfrac{a}{2}} \right)^2}$$
    $$ = {\mu _0}I \times \dfrac{1}{4} = \dfrac{{{\mu _0}I}}{4}$$
    $$ \Rightarrow {B_1} = \dfrac{{{\mu _0}I}}{{4\pi a}}$$
    $$B' \times 2\pi \left( {2a} \right) = {\mu _0}I$$
    $$\dfrac{B}{{B'}} = \dfrac{{{\mu _0}I}}{{4\pi a}} \times \dfrac{{4\pi a}}{{{\mu _0}I}} = 1$$
    Hence,
    option $$(C)$$ is correct answer.
  • Question 7
    1 / -0
    The magnetic field of $$2\times { 10 }^{ 2 } T$$ acts at right angles to a coil of area $$100 cm^{2}$$ with $$50$$ turns. The average emf induced in the coil is $$0.1 V$$, When it is removed from the field in time $$L$$.The value of $$t$$ is
    Solution

  • Question 8
    1 / -0
    If $$i=t^2 0 < t < T$$ then r.m.s value of current is 
    Solution
    $$\begin{array}{l} i={ t^{ 2 } } \\ \left\langle { r.m.s } \right\rangle =\left\langle { { l^{ 2 } } } \right\rangle =\sqrt { \dfrac { { { { \left( { { t^{ 2 } } } \right)  }^{ 2 } }dt } }{ { dt } }  }  \\ =\dfrac { { { t^{ 5 } } } }{ { 4t } } ={ \left[ { \int  _{ 0 }^{ 1 }{ \dfrac { { { t^{ 4 } } } }{ 4 }  } } \right] ^{ \dfrac { 1 }{ 2 }  } } \\ \left\langle { r.m.s } \right\rangle ={ \left[ { \dfrac { { { t^{ 4 } } } }{ 4 }  } \right] ^{ \dfrac { 1 }{ 2 }  } }=\dfrac { { { T^{ 2 } } } }{ 2 }  \\ \therefore { l_{ r.m.s } }=\dfrac { { { T^{ 2 } } } }{ 2 }  \end{array}$$
    Hence, option $$B$$ is the correct answer.
  • Question 9
    1 / -0
    Equivalent resistance between $$A$$ and $$B$$ is 

    Solution
    The correct option is C.

  • Question 10
    1 / -0
    The equivalent resistance of fig shown between 'a' and 'b' is

    Solution
    $$\therefore$$ Option $$B$$ is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now