Particle travels along $$x$$ axis
Hence $${ V }_{ y }={ V }_{ z }=0$$
Electric feild is along the negative $$z$$ axis
$${ E }_{ x }={ E }_{ y }=0$$
Therefore net force on the particle $$\vec { F } =q\left( \vec { E } +V\times \vec { B } \right) $$
Resolve the motion along three coordinate axis
$${ a }_{ x }=\cfrac { { F }_{ x } }{ m } =\cfrac { q }{ m } \left( { E }_{ x }+{ V }_{ y }{ B }_{ z }-{ V }_{ x }{ B }_{ y } \right) \\ { a }_{ y }=\cfrac { { F }_{ x } }{ m } =\cfrac { q }{ m } \left( { E }_{ y }+{ V }_{ z }{ B }_{ x }-{ V }_{ xz } \right) \\ { a }_{ z }=\cfrac { { F }_{ x } }{ m } =\cfrac { q }{ m } \left( { E }_{ z }+{ V }_{ x }{ B }_{ y }-{ V }_{ y }{ B }_{ x } \right) $$
Since,
$${ V }_{ y }={ V }_{ z }=0\\ { E }_{ x }={ E }_{ y }=0\\ { B }_{ x }={ B }_{ z }=0$$
$${ a }_{ x }={ a }_{ y }=0\\ { a }_{ z }=\cfrac { q }{ m } \left( -{ E }_{ z }+{ V }_{ x }{ B }_{ y } \right) $$
Again $${ a }_{ z }=0$$ , as the particle transverse through the region undeflected
$${ E }_{ z }={ V }_{ x }{ B }_{ y }$$
$${ B }_{ y }=\cfrac { { E }_{ z } }{ { V }_{ x } } =\cfrac { { 10 }^{ 4 } }{ 10 } ={ 10 }^{ 3 }wb/m^{ 2 }$$